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Supporting Figures

Figure S1. (A) α-MnO2 [MnO6] octahedra tunnel structure model; (B) δ-MnO2 [MnO6] 
octahedra layer structure model.



Figure S2. FESEM of intermediate product of (A) NaMix, (B) Na100-2, (C) Na100-6, 
(D) Na100-10, (E) Na 100-14 and (F) Na80.



Figure S3. (A) The long nanosheets are cut along (001) plane, (B) The nanorods are 
cut along (001) plane.



Figure S4. HRTEM image of the initial NaMix indicate the size about the edge of 
primary nanoflakes to be 3-4 nm



\
Figure S5. (A) HRTEM image of the intermediate Na100-10 indicate two long 
nanosheets stack and thicken. (B) AFM image of the intermediate Na100-10 indicate 
the nanoflakes stack on the nanoribbon.



 
Figure S6. Scheme of a δ-MnO2 layer which containing 1/3 vacancy (blue octahedral) 
per layer octahedron, seen along c-axis. The MnLX (X = 1, 2 or 3) means the first, 
second and third Mn shells around a given Mn. The MnILY (Y= 1 or 2) means pairs 
formed by layer Mn and Mn at vacancies belonging respectively to the first and second 
shells.



Figure S7. XPS broad scans of (a) Mn 2p3/2 and (b) Mn 3s spectra of intermediate 
products at NaMix, Na100-4, Na100-10, Na100-14, and Na80.

a b



Figure S8. Oxygen 1s spectra of intermediate products at different intervals of Na+ 
stabilized α-MnO2 formation and crystal growth;

Figure S9. The TEM and HRTEM images during entire synthetic process: (a, b) 
NaMix, (c, d) Na100-4, (e, f) Na100-10, (g, h) Na100-14 and (i, j) Na80.



Figure S10. Schematic illustrating the ideal structure of δ-MnO2 which can assemble 
to α-MnO2.



Figure S11. XRD patterns of intermediate products at different intervals of K+ 
stabilized α-MnO2 formation and crystal growth;



Figure S12. XRD patterns of intermediate products at different intervals of Na+ 
stabilized α-MnO2 age under 60 ℃.



Figure S13 the calculated relaxed (a) Na+ stabilized α-MnO2 structure and (b) K+ 
stabilized α-MnO2 structure.

Supporting Tables

Table S1. K+ content, average oxidation states (AOS) of Mn in intermediate products 
at various time intervals during K+-stabilized α-MnO2 formation obtained from titration 
and fittings of Mn (2p3/2)

Samples XPS (± 0.02) Titration K+
 content (% mol)

KMix 3.80 3.95 ± 0.03 6.91 ± 0.13
K100-0 3.77 3.90 ± 0.01 4.85 ± 0.09
K100-2 - 3.85 ± 0.01 39.57 ± 0.15
K100-4 3.74 3.80 ± 0.02 5.25 ± 0.11



K100-10 3.80 3.87 ± 0.04 5.89 ± 0.04
K100-20 - 3.85 ± 0.02 8.51 ± 0.03

K80 3.80 3.82 ± 0.03 10.56 ± 0.08

Table S2. Near-surface compositions of Mn and O species derived from fittings of 
Mn (2p3/2) and O (1s).

Sample
Mn(III) 
(±0.003)

Mn(II) 
(±0.001)

Mn(IV) 
(±0.003)

O2- OH- H2O

KMix 0.158 0.037 0.845 0.661 0.183 0.156
K100-0 0.149 0.037 0.814 0.645 0.196 0.159
K100-4 0.153 0.049 0.798 0.580 0.218 0.202
K100-10 0.112 0.039 0.849 0.640 0.210 0.150

K80 0.137 0.028 0.835 0.770 0.161 0.068


