Electronic Supplementary Information

Thiolated Silica Nanoadsorbents Enable Ultrahigh and Fast Decontamination of Mercury (II): Understanding the Contribution of Thiol Moieties Density and Accessibility on Adsorption Performance

Mohammad Kalantari, ^a Zhengying Gu, ^a Yuxue Cao, ^a Chang Lei, ^{*a} and Jun Zhang^{*a}

^a Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.

E-mail: c.lei1@uq.edu.au and j.zhang11@uq.edu.au.

Fig. S1 (a) N₂ sorption isotherms and (b) pore size distribution curves of TDMSNs-r.

Fig. S2 TGA profiles of adsorbents.

Fig. S3 TEM image of TDMSNs-0.2 after 5 cycle's mercury (II) adsorption.

Fig. S4 TEM images of (a) DMSNs and (b) DMSNs-T-G. (c) N_2 sorption isotherms and (d) pore size distribution curves of DMSNs and DMSNs-T-G.

Fig. S5 Adsorption isotherms for mercury (II) adsorption on (a) DMSNs and (b) DMSNs-T-G. (c) The kinetic adsorption profiles for mercury (II) adsorption on DMSNs and DMSNs-T-G.

Fig. S6 TEM images (a and b), (c) N_2 sorption isotherms, and (d) pore size distribution curves, (e) adsorption isotherm for mercury (II) adsorption, and (f) the kinetic adsorption profile for mercury (II) adsorption for TMSNs-0.2.

Fig. S7 FT-IR spectra of TDMSNs-0.2 before (red) and after (green) Hg (II) adsorption.

Adsorbent	K _L (L mg ⁻¹)	q _{max} (mg g ⁻¹)	R ²
TDMSNs-0.05	0.405	707.4	0.99
TDMSNs-0.1	0.321	1033.1	0.99
TDMSNs-0.2	0.138	1502.4	0.99

 Table S1. Langmuir model parameters for TDMSNs-r.

Table S2. Detailed comparison of mercury adsorption performance for various adsorbents.

Adsorbent	Q a	M ^b	t ^c	R ^d	Ref
Thiol-functionalized	1000	0.01	20	0.90 after 3 cycles	Nat. Commun., 2014, 5,
MOF		0.50 after 5 cycles	5537.		
Thiolated porous	1216	1.19	10	NA	Adv. Mater., 2017, 29,
organic polymer			10		1700665.
	42	0.08	30	NA	Micropor. Mesopor.
1010101-41		0.00	50		Mater., 2018, 258, 217.
	429	2 71	F	NA	New J. Chem., 2014, 38,
3DA-15		3.71	5		248.
Maganarawa silian	<u></u>		60	NIA	Adv. Mater., 1998, 10,
Mesoporous silica 600 I		NA	60	NA	161.
DMO	64.8	1	00	NA	Langmuir, 2010, 26,
PMO		1	90		10076.
Hierarchically	140	NA 72	700	NIA	J. Mater. Chem., 2011,
porous silica			720	NA	21, 15567.
TDMSNs-0.2	1502.4	2.11	5	0.89 after 5 cycles	This work

^{a)} Adsorption capacity (mg g⁻¹); ^{c)} Mercury to Sulphur molar ratio; ^{c)} time to reach 99.9% of the equilibrium adsorption capacity (min); ^{d)} Retention of initial adsorption capacity.

 Table S3. Pseudo-second order kinetic parameters for TDMSNs-r.

Adsorbent	K ₂ (g mg ⁻¹ min ⁻¹)	q _e (mg g⁻¹)	R ²
TDMSNs-0.05	0.003	711.0	0.99
TDMSNs-0.1	0.004	1033.1	0.99
TDMSNs-0.2	0.002	1510.2	0.99

Table S4. Measured equilibrium concentration (C_e) after 5 min for TDMSNs-*r* at different initial concentration (C_i) of the mercury (II). For C_i of 10 ppm, atomic absorption spectrometer in its high sensitivity mode with the limit of detection of 0.001 ppm was used while for other concentrations, the limit of detection was increased to 0.1 ppm.

C _i (ppm)	TDMSNs-0.5	TDMSNs-0.1	TDMSNs-0.2
10	<lod*< th=""><th><lod*< th=""><th><lod*< th=""></lod*<></th></lod*<></th></lod*<>	<lod*< th=""><th><lod*< th=""></lod*<></th></lod*<>	<lod*< th=""></lod*<>
50	0.8	0.3	0.1
100	1.7	1.2	0.9
200	2.3	2.9	2.1
300	3.8	4.1	2.9
400	59.4	6.8	3.8
500	154.2	11.9	6.7
600	-	98.2	-
750	398.6	241.3	89.1
1000	-	487.2	296.7
1500	-	-	751.4

* Less than limit of detection