Supplementary material

Ultra-small CoO_x/GO catalyst supported on ITO glass by electrochemical post-treatment of redox-active infinite coordination polymer: a portable reactor for real-time monitoring catalytical oxidative degradation of colored wastewater

Xinrui You,^{a,b} Chunyu Huang,^{a,b} Wei Huang,^{a,b} Guoyue Shi,^c Jingjing Deng^{*a,b} and Tianshu Zhou^{*a,b}

^aSchool of Ecological and Environmental Sciences, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.

^bInstitute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China.

^cDepartment of Chemistry, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.

* Corresponding Authors: E-mail: jjdeng@des.ecnu.edu.cn, tszhou@des.ecnu.edu.cn

Fax: +86-21-54341277, Tel: +86-21-54341277

Samplas	Synthesis method		Reaction	Reaction time (h)		Sample size	
Samples	Step 1	Step 2	_{max} (°C)	Step 1	Step 2	(nm)	
CoO/ MWCNTs ¹	Spray pyrolysis	Spray _ pyrolysis		_	_	40 ± 10	
C0 ₃ O ₄ ²	Hydrothermal	_	500	8	-	500	
Co ₃ O ₄ @PFR ³	Hydrothermal	_	160	6.33	_	60	
C03O4 ⁴	Pulsed laser deposition	_	250	25 ns	_	50	
C03O4@N-C ⁵	Hydrothermal	Thermal decomposition	800	96	12	20	
CoO _x /CPC ⁶	Hydrothermal	Thermal decomposition	500	26	24	100	
Mesoporous Co ₃ O ₄ ⁷	Ball milling	Calcination	400	1	27	10-14	
C0 ₃ O ₄ ⁸	Solvothermal	Calcination	700	3	12	32.3	
C03O4 NPs/TNWs ⁹	Hydrothermal	Calcination	450	30	8	22 ± 3	
C03O4 ¹⁰	Mixing	Calcination	400	_	2	48	
C0 ₃ O ₄ ¹⁰	Calcination	Electron beam deposition	400	2	2	27	
C0 ₃ O ₄ ¹⁰	Sol-gel method	Heat treatment	400	0.5	2	20	
C03O4 ¹⁰	Electroless deposition	Heat treatment	400	_	2	38	
CoO _x (This work)	Mixing	Electrochemical post-treatment	Room temperature	0.08 (5 min)	0.28 (16.7 min)	1.42 ± 0.34	

Table S1. Comparison of synthesis methods for cobalt oxide.

Spectra	Instate	0	Co	Total
1	Yes	25.42	74.58	100.00
2	Yes	25.13	74.87	100.00
3	Yes	25.59	74.41	100.00
4	Yes	25.18	74.82	100.00
5	Yes	25.31	74.69	100.00
Average		25.32	74.68	100.00

Table S2. Mass ratio of O and Co in the TEM-EDS of CoO_x .

Catalyst (mg)	PMS (mmol L ⁻¹)	Temp. (°C)	pН	Additive	k ₁ (min ⁻¹)
0.1	0.5	60	7.0	_	0.487
0.3	0.5	60	7.0	_	0.738
0.5	0.5	60	7.0	_	0.764
0.6	0.5	60	7.0	_	0.784
0.8	0.5	60	7.0	_	0.828
0.5	0.25	60	7.0	_	0.353
0.5	0.5	60	7.0	_	0.766
0.5	1.0	60	7.0	_	1.565
0.5	2.0	60	7.0	_	2.140
0.5	0.5	60	3.0	_	0.351
0.5	0.5	60	5.0	_	0.731
0.5	0.5	60	9.0	_	0.742
0.5	0.5	60	11.0	_	0.279
0.5	0.5	30	7.0	_	0.068
0.5	0.5	45	7.0	_	0.231
0.5	0.5	60	7.0	_	0.766
0.5	0.5	75	7.0	_	1.440
0.5	0.5	60	7.0	0.5 g L ⁻¹ NaNO ₃	0.847
0.5	0.5	60	7.0	0.5 g L ⁻¹ NaCl	0.183
0.5	0.5	60	7.0	0.5 g L ⁻¹ NaHCO ₃	0.080
0.5	0.5	60	7.0	0.5 mol L ⁻¹ TBA	0.699
0.5	0.5	60	7.0	0.5 mol L ⁻¹ MeOH	0.141
0.5	0.5	60	7.0	2 mol L ⁻¹ TBA	0.273
0.5	0.5	60	7.0	2 mol L ⁻¹ MeOH	0.025

Table S3. The pseudo-first-order rate constants of MB degradation by CoO_x/GO catalyst activated PMS under various conditions ($C_{MB} = 20 \text{ mg/ L}$).

Catalysts	Dyes	Ea (kJ/mol)		
MCC ¹¹	Amaranth	64.5		
CoMoO ₄ ¹²	Methylene blue	69.89		
Co-Mn LDH ¹³	Acid orange G	72.29		
CoCNF ¹⁴	Amaranth	70.4		
CoO _x /GO (This work)	Methylene blue	60.78		

Table S4. Activation energy values for dye degradation using PMS activated by various cobalt-based catalysts.

Catalyst	Dose of catalyst (mg)	Dose of PMS (mg)	Amount of MB (µg)	Degradation efficiency (%)	Degradation time
Co ₃ O ₄ by PLD ⁴	1.2	7.68	100	75	5 min (25 °C)
C03O4 NPs/TNWs ⁹	0.75	0.23	15	100	10 min (None)
Co ₃ O ₄ powder ¹⁰	0.3	1.47	15	59.5	10 min (25 °C)
C0 ₃ O ₄ ¹⁵	3.22	0.31	32	95.7	90 min (None)
$Co_2O_3^{15}$	3.32	0.31	32	88.5	90 min (None)
CoO ¹⁵	3.00	0.31	32	98.5	90 min (None)
Co ₃ O ₄ /Graphene ¹⁶	0.3	1.47	15	84.8	10 min (25 °C)
C0 ₃ O ₄ /CNFs ¹⁷	0.2	3.07	373	100	30 min (None)
CoPc/CFs ¹⁸	4.00	0.62	18.7	48	10 min (50 °C)
Co/ACFs ¹⁹	4.00	0.62	18.7	100	35 min (25 °C)
Co/N-CNTs ²⁰	1.00	2.00	100	100	2.5 min (None)
CoO _x (This work)	0.3	0.31	40	92.3	6.7 min (60 °C)
CoO _x /GO (This work)	0.5	0.31	40	100	6.7 min (60 °C)

Table S5. Comparison of various catalysts for catalytical oxidative degradation of MB by activation of PMS.

Source of wastewater	Dose of catalyst (mg)	Dose of PMS (mmol L ⁻	Degradation temperature (°C)	Degradation efficiency after 2 min by	TOC (mg L ⁻¹)	TOC removal efficiency
		1)		HPLC(%)		(%)
MB	0.5	0.5	60	99.90	39.1	80.64
Textile-1	0.5	9.3	60	98.66	725.5	71.95
Textile-2	0.5	3.5	60	98.99	278.1	74.94
Cosmetic	0.5	4.2	60	98.59	324.5	80.40

Table S6. Catalytical oxidative degradation of MB and three colored wastewater samples.

Fig. S1. (A) Degradation efficiency of MB (2.0 mL, 20 mg L⁻¹) in the presence of PMS (50 μ L, 0.02 mol L⁻¹) and CoO_x/MCNTs nanocatalysts at different time intervals; (B) Degradation efficiency of MB (2.0 mL, 20 mg L⁻¹) with presence of same amount of nanocatalysts CoO_x/MCNTs (7/5), CoO_x, CoO_x/GO (7/5) supported on ITO glass after 6.7 min for the first run; (C) Recyclability of CoO_x/MCNTs (7/5) nanocatalyst supported on the ITO glass for degradation of MB.

Firstly, the conductive multi-walled carbon nanotubes (MCNTs) were mixed with Co-ICP and the catalytic activity of as-formed $CoO_x/MCNTs$ nanocomposites towards the oxidation of MB by PMS was investigated. As demonstrated in Fig. S1A, B, within 6.7 min, 94.7 % MB (2.0 mL, 20 mg L⁻¹) could be degraded by PMS with the presence of $CoO_x/MCNTs$ nanocatalysts, which was higher than that of the CoO_x NPs (92.3%), but lower than CoOx/GO nanocatalyst (100%). The stability of $CoO_x/MCNTs$ nanocatalyst supported on ITO glass was also tested (Fig. S1C). After the 3rd run, the degradation efficiency was decreased to 14.9%, which was much lower than CoO_x/GO nanocatalyst (100%) (Fig. 7). The superiority of CoO_x/GO nanocatalyst may ascribe to the fact that two-dimensional structure of GO make it easily accessible for the deposition of CoO_x and increased the robustness of the catalysts on ITO glass and their extraordinary adsorption capacity significantly promoted the dyes to accumulate on the surface of the catalyst and approached to the active oxidants. Consequently, GO was chosen as a matrix and mixed with Co-ICP as a precursor to obtain CoO_x/GO nanocatalyst supported on ITO glass for catalytical oxidative degradation of colored wastewater.

Fig. S2. Effect of different mass ratio of Co-ICPs to GO (2/1, 5/3, 7/5, 6/5 and 1/1) on the degradation of MB (Condition: $C_{MB} = 20 \text{ mg L}^{-1}$; $CoO_x/GO = 0.5 \text{ mg}$; PMS = 0.5 mmol L⁻¹; pH = 7.0; T = 60 °C).

Fig. S3. UV-vis spectra of 2.0 mL wastewater textile-1 (A), textile-2 (B) and cosmetic (C) in reactor constructed by ITO glass with CoO_x/GO catalyst supported on. UV-vis spectra were consecutively recorded every 0.5 min shortly after the addition of PMS (9.3 mmol L⁻¹ for textile-1, 3.5 mmol L⁻¹ for textile-2, 4.2 mmol L⁻¹ for cosmetic) at 60 °C.

Fig. S4. Chromatogram of 2.0 mL MB (20 mg L^{-1}) (A), wastewater textile-1 (B), textile-2 (C) and cosmetic (D) in our reactor before (black curve) and 2 min after (red curve) the addition of PMS (0.5 mmol L^{-1} for MB, 9.3 mmol L^{-1} for textile-1, 3.5 mmol L^{-1} for textile-2 and 4.2 mmol L^{-1} for cosmetic) at 60 °C.

References

- 1. F. Lupo, R. Kamalakaran and A. Gulino, Viable route for cobalt oxide-carbon nanocomposites, *J. Phys. Chem. C*, 2009, **113**, 15533-15537.
- X. Xiao, X. Liu, H. Zhao, D. Chen, F. Liu, J. Xiang, Z. Hu and Y. Li, Facile shape control of Co₃O₄ and the effect of the crystal plane on electrochemical performance, *Adv. Mater.*, 2012, 24, 5762-5766.
- J. Ma, W. Liu, S. Zhang and Y. Zhao, Co₃O₄@PFR cube-like core-shell nanocomposite prepared via a facile one-step hydrothermal approach, *J. Nanopart. Res.*, 2011, 13, 1219-1228.
- T. Warang, N. Patel, A. Santini, N. Bazzanella, A. Kale and A. Miotello, Pulsed laser deposition of Co₃O₄ nanoparticles assembled coating: Role of substrate temperature to tailor disordered to crystalline phase and related photocatalytic activity in degradation of methylene blue, *Appl. Catal. A: Gen.*, 2012, **423**, 21-27.
- G. Zhang, C. Li, J. Liu, L. Zhou, R. Liu, X. Han, H. Huang, H. Hu, Y. Liu and Z. Kang, One-step conversion from metal-organic frameworks to Co₃O₄@N-doped carbon nanocomposites towards highly efficient oxygen reduction catalysts, *J. Mater. Chem. A*, 2014, 2, 8184-8189.
- W. Y. Choi, D. K. Lee, H.-T. Kim, J. W. Choi and J. W. Lee, Cobalt oxide-porous carbon composite derived from CO₂ for the enhanced performance of lithium-ion battery, *J. CO₂ Util.*, 2019, **30**, 28-37.
- J. Liu, H. Cheng, J. Bao, P. Zhang, M. Liu, Y. Leng, Z. Zhang, R. Tao, J. Liu, Z. Zhao and S. Dai, Aluminum hydroxide-mediated synthesis of mesoporous metal oxides by a mechanochemical nanocasting strategy, *J. Mater. Chem. A*, 2019, 7, 22977-22985.
- Y. Cai, J. Xu, Y. Guo and J. Liu, Ultrathin, polycrystalline, two-dimensional Co₃O₄ for low-temperature CO oxidation, *ACS Catal.*, 2019, 9, 2558-2567.
- Z. Chen, S. Chen, Y. Li, X. Si, J. Huang, S. Massey and G. Chen, A recyclable and highly active Co₃O₄ nanoparticles/titanate nanowire catalyst for organic dyes degradation with peroxymonosulfate, *Mater. Res. Bull.*, 2014, 57, 170-176.
- 10. T. Warang, N. Patel, R. Fernandes, N. Bazzanella and A. Miotello, Co₃O₄ nanoparticles

assembled coatings synthesized by different techniques for photo-degradation of methylene blue dye, *Appl. Catal. B: Environ.*, 2013, **132**, 204-211.

- K.-Y. A. Lin, Y.-C. Chen and C.-F. Huang, Magnetic carbon-supported cobalt prepared from one-step carbonization of hexacyanocobaltate as an efficient and recyclable catalyst for activating oxone, *Sep. Purif. Technol.*, 2016, **170**, 173-182.
- Y. Fan, W. Ma, J. He and Y. Du, CoMoO₄ as a novel heterogeneous catalyst of peroxymonosulfate activation for the degradation of organic dyes, *RSC Adv.*, 2017, 7, 36193-36200.
- X. Zhao, C. Niu, L. Zhang, H. Guo, X. Wen, C. Liang and G. Zeng, Co-Mn layered double hydroxide as an effective heterogeneous catalyst for degradation of organic dyes by activation of peroxymonosulfate, *Chemosphere*, 2018, 204, 11-21.
- K.-Y. A. Lin, J.-T. Lin, X.-Y. Lu, C. Hung and Y.-F. Lin, Electrospun magnetic cobaltembedded carbon nanofiber as a heterogeneous catalyst for activation of oxone for degradation of Amaranth dye, *J. Colloid Interface Sci.*, 2017, **505**, 728-735.
- B. Zhang, Y. Zhang, W. Xiang, Y. Teng and Y. Ynag, Comparison of the catalytic performances of different commercial cobalt oxides for peroxymonosulfate activation during dye degradation, *Chem. Res. Chin. Univ.*, 2017, **33**, 822-827.
- H. Sun, S. Liu, G. Zhou, H. M. Ang, M. O. Tadé and S. Wang, Reduced graphene oxide for catalytic oxidation of aqueous organic pollutants, *ACS Appl. Mat. Interfaces*, 2012, 4, 5466-5471.
- B.-T. Zhang, Y. Zhang and Y. Teng, Electrospun magnetic cobalt-carbon nanofiber composites with axis-sheath structure for efficient peroxymonosulfate activation, *Appl. Surf. Sci.*, 2018, **452**, 443-450.
- Z. Huang, Y. Yao, J. Lu, C. Chen, W. Lu, S. Huang and W. Chen, The consortium of heterogeneous cobalt phthalocyanine catalyst and bicarbonate ion as a novel platform for contaminants elimination based on peroxymonosulfate activation, *J. Hazard. Mater.*, 2016, **301**, 214-221.
- 19. Z. Huang, H. Bao, Y. Yao, J. Lu, W. Lu and W. Chen, Key role of activated carbon fibers in enhanced decomposition of pollutants using heterogeneous

cobalt/peroxymonosulfate system, J. Chem. Technol. Biotechnol., 2016, 91, 1257-1265.

 M. Chen, L. Zhu, Y. Zhang, J. Zou and H. Tang, Cobalt particles encapsulated and nitrogen-doped bamboo-like carbon nanotubes as a catalytic and adsorptive bifunctional material for efficient removal of organic pollutants from wastewater, *J. Environ. Chem. Eng.*, 2017, 5, 5322-5330.