3

Supporting Information

- 2 Underlying Mechanisms of Reactive Oxygen Species and Oxidative Stress photoinduced
 - by Graphene and its Surface Functionalized Derivatives
- 4 Hongye Yao^{a,#}, Yang Huang^{a,#}, Xuan Li^{a,#}, Xuehua Li^{a,*}, Hongbin Xie^a, Tianlie Luo^a, Jingwen
- 5 Chen^a, Zhongfang Chen^b
- 6 ^aKey Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of
- 7 Environmental Science and Technology, Dalian University of Technology, Linggong Road 2,
- 8 Dalian 116024, China.
- 9 ^bDepartment of Chemistry, University of Puerto Rico, San Juan, Puerto Rico 00931, United

10 States.

- ¹¹ [#]These authors contributed equally to the paper.
- 12 * Corresponding author: 0411-84707844, E-mail: <u>lixuehua@dlut.edu.cn</u>

- 14 Figure S1. Fourier transforms infrared spectra of G-COOH, G-NH₂ and u-G before and after 5
- 15 h irradiation treatments.
- Figure S2. The Raman spectrum of G-COOH, G-NH₂ and u-G before and after 2 h and 6 h
 irradiation.
- 18 Figure S3. Spectrum of irradiation for experiment.
- 19 **Figure S4.** EPR detection of ${}^{1}O_{2}$ and •OH in G-COOH, G-NH₂ and u-G suspensions in the 20 dark.
- 21 Figure S5. Absorbance of XTT formation indicating O2 production in SDS solutions by XTT
- 22 (0.1 mM) under lamps light.
- 23 Figure S6. Cyclic voltammetry curves of G-COOH, G-NH₂ and u-G on a Pt/C substrate at a
- 24 sweep rate of 50 mV/s.
- 25 Table S1. Optimized configurations and frontier molecular orbitals energies of u-G.
- 26 **Table S2.** Description on substitution sites of functionalized graphene.
- 27 Figure S7. Optimized configurations and frontier molecular orbitals energies of G-COOH
- $28 \quad and \ G\text{-}NH_2.$
- 29 TableS3. The configurations and frontier molecular orbitals energies of u-G with defect.

- 30 Figure S1. Fourier transform infrared spectra of G-COOH, G-NH₂ and u-G before (a) and
- 31 after 5 h (b) irradiation treatments.

34 Figure S2. The Raman spectrum of G-COOH, G-NH₂ and u-G before and after 2 h and 6 h

35 irradiation.

39 Figure S3. Spectrum of radiation for experiment. (a) Spectrum of mercury lamp; (b)

40 Spectrum of simulated sunlight radiation

41

37

43 Figure S4. EPR spectrum recorded at ambient temperature for (a) TEMP adduct with ¹O₂ and
44 (b) DMPO adduct with •OH in G-COOH, G-NH₂ and u-G suspensions in the dark (graphene
45 of 15 mgC/L).

48 Figure S5. Absorbance of XTT formation indicating O_2 • production in SDS solutions by XTT

49 (0.1 mM) under lamps light.

Figure S6. Cyclic voltammetry curves of G-COOH, G-NH₂ and u-G on a Pt/C substrate at a
sweep rate of 50 mV/s.

The electrochemical properties of G-COOH, G-NH₂ and u-G were investigated by cyclic voltammetry. As shown in the cyclic voltammetry curves, G-COOH, G-NH₂ and u-G have one irreversible reduction, but no oxidation. The E_{HOMO} and E_{LUMO} (relative to the vacuum level) can be calculated by using the electrochemical method with the following equation:^[1-2]

$$E_{\text{LUMO}} \text{ (or } E_{\text{HOMO}} \text{)} = -4.5 - eE^{\text{red}_0} \text{ (or } E^{\text{ox}_0} \text{)}$$

61 where, E^{red_0} and E^{ox_0} represent reduction and oxidation potentials corresponding to reference

62 electrode, respectively, E_{LUMO} and E_{HOMO} are relative to the absolute vacuum scale (AVS). In

63 this study, E^{red_0} was determined from the onsets of the reduction peaks.

64 [1] Cernini R, Li X C, Spencer G W C, et al. Electrochemical and optical studies of PPV

65 derivatives and poly (aromatic oxadiazoles). Synthetic metals, 1997, 84(1): 359-360.

66 [2] Usta H, Risko C, Wang Z, et al. Design, synthesis, and characterization of ladder-type

67 molecules and polymers. Air-stable, solution-processable n-channel and ambipolar

- 68 semiconductors for thin-film transistors via experiment and theory. Journal of the American
- 69 Chemical Society, 2009, 131(15): 5586-5608.
- 70

Table S1. Optimized configurations and frontier molecular orbitals energies of u-G.

* Active site of u-G was at the edges of graphene sheet.

74

	α-site		β-site			
	configurati on	Zigzag	Zigzag			
76	* There are two kinds of substitution sites at the zigzag edges: α -site (left) and β -site					
77	(right). ^[3] The energy for β -site are lower that α -site at the zigzag edges.					
78						
79	[3] Kobayashi Y, Fukui K, Enoki T, et al. Edge state on hydrogen-terminated graphite edge					
80	investigated by scanning tunneling microscopy. Physical Review B, 2006, 73(12): 125415-					
81	125423.					

Figure S7. Optimized configurations and frontier molecular orbitals energies of G-COOH and G-NH₂. The possible 6 configurations with 6 functional groups were considered in the calculation of E_{HOMO} and E_{LUMO} for G-COOH and G-NH₂. In this calculation, 4 carboxyl groups were added to the corner sites of graphene sheet and the remaining 2 carboxyl groups were added to the α -site or β -site of the zigzag edge. Amino group was also considered to have similar substitution mode with carboxyl group.

	G-defect-g1	G-defect-g2	G-defect-g3	G-defect-g4
configurati on		ى ئەرە ئەرە ئەرە يەرە يە يەرە يە ئەرە ئەرە يە ئەرە ئەرە يە يەرە يە ئەرە يە ئەرە يە يە يە يە ئەرە يە يە ئەرە ي	ى ئەرىقى ئەرىقى ئەرىقى ئەرى بەرىغى ئەرىقى ئەرىغى بەرىغى ئەرىغى ئەرىغى بەرىغى ئەرىغى ئەرىغى بەرىغى ئەرىغى ئەرىغى بەرىغى ئەرىغى ئەرىغى	
$E_{\rm LUMO}~({\rm eV})$	-3.844	-3.888	-3.770	-4.098
$E_{\rm HOMO}({\rm eV})$	-4.099	-4.144	-4.050	-4.368
$E_{g}(eV)$	0.255	0.256	0.280	0.270

90 Table S3. The configurations and frontier molecular orbitals energies of u-G with defect*.

91 *G-defect-g1 indicates that graphene with defect is on the center of graphene sheet, and G-

92 defect-g2 indicates that graphene with defect is close to the zigzag edge.

93