Supporting Information

Guping Zhang,^a Xingwang Zhu,^b Dongyun Chen,^{*,a} Najun Li,^a Qingfeng Xu,^a Hua Li,^a Jinghui He,^a Hui Xu,^b and Jianmei Lu^{*,a}

^aCollege of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Suzhou Nano Science and Technology Soochow University, Suzhou
215123 (P.R. China)
^bInstitute for Energy Research, Jiangsu University, Zhenjiang 212013 (P.R. China)

E-mail: dychen@suda.edu.cn; lujm@suda.edu.cn

Table of Contents

- S1. SEM images of as-prepared samples
- **S2. TEM-EDX of as-prepared samples**
- S3. Survey XPS spectrum of CN/Au/ZIS-1 sample
- S4. Valence-band XPS of CN and ZnIn₂S₄ samples
- S5. Pore size distribution curve of CN/Au/ZIS-1 sample
- S6. EIS and time-resolved transient PL spectra of as-prepared samples
- S7. Photocatalytic activities of prepared samples and Detecting of NO₂
- S8. Detecting of H₂O₂ and •OH
- S9. Photocatalytic CO₂ conversion without 2,2-bipyridine (bpy)
- **S10.** The calculation about the N-balance
- S11. Data comparison of photocatalytic NO removal over different catalysts
- S12. Data comparison of photocatalytic CO₂ reduction over different catalysts
- S13. Reference

S1. SEM images of as-prepared samples

Figure S1. SEM images of as-prepared (a) CN, (b) $ZnIn_2S_4$, (c) CN/Au/ZIS-0.5 and (d) CN/Au/ZIS-2.

S2. TEM-EDX of as-prepared samples

Figure S2. TEM-EDX of as-prepared CN/Au.

Figure S3. TEM-EDX of as-prepared CN/Au/ZIS-1.

S3. Survey XPS spectrum of CN/Au/ZIS-1 sample

Figure S4. Survey XPS spectrum of the CN/Au/ZIS-1 sample.

S4. Valence-band XPS of CN and $ZnIn_2S_4$ samples

Figure S5. Valence-band XPS spectra of CN and $ZnIn_2S_4$ samples.

S5. Pore size distribution curve of CN/Au/ZIS-1 sample

Figure S6. Pore size distribution curves of obtained CN/Au/ZIS-1 sample.

Figure S7. EIS spectra (a) and time-resolved transient PL decay (b) of the as-prepared samples.

S7. Photocatalytic activities of prepared samples and Detecting of NO₂

Figure S8. (a) Visible-light photocatalytic activities of the CN/Au/ZIS-1 and CN/ZIS-1 samples for NO removal in air (600 ppb). (b) Monitoring of NO₂ intermediates during irradiation.

S8. Detecting of H₂O₂ and •OH

Figure S9. The fluorescence intensity of (a) H_2O_2 and (b) ·OH-trapping PL spectra of the CN/Au/ZIS-1 at different visible light irradiation times.

S9. Photocatalytic CO₂ conversion without 2,2-bipyridine (bpy)

Figure S10. CO₂ photoreduction activities of different samples without 2,2-bipyridine (bpy).

S10. The calculation about the N-balance

The concentration of NO_3^- detected by ion chromatography, the washing solution (1000 mL) was concentrated 100 times before the detection. Therefore, the concentration of NO_3^- in washing solution should be 0.016 mg/L.

(1) The consumption of NO (C_{NO}): $C_{NO} = \sum_{t=1}^{t=30} NOc = 8746 \text{ ppb} = 8.746 \text{ ppm}.$

The concentration of consumption NO (C_{NO}) is: $C_{NO} = \frac{30 \times 8.746}{22.4} = 11.713 \ \mu g/L;$

(2) The generated NO₂ (C_{NO2}) is:
$$C_{NO2} = \sum_{t=1}^{t=30} NO_2 c = 3153 \text{ ppb} = 3.153 \text{ ppm}.$$

The concentration of NO which converted to NO₂ (C_{NO/NO2}) is: $C_{NO/NO2} = \frac{30 \times 3.153}{22.4} = 4.223$ µg/L;

(3) The concentration NO which converted to HNO_3 ($C_{NO/HNO3}$) is:

$$C_{\text{NO/NO3-}} = \frac{0.016}{62} \times 30 = 0.007742 \text{ mg/L} = 7.742 \text{ }\mu\text{g/L};$$

(4) $C_{NO/NO3-} + C_{NO/NO2} = 7.742 + 4.223 = 11.965 \mu g/L$; this value approximately equal to that of consumption NO, therefore, the formed NO₂, and NO₃⁻ can meet with the consumed NO.

Catalyst	Catalyst	NO	Light type	Time	$\eta_{(NO)}$	Ref
	(mg)	(ppb)	(Xe lamp)	(min)	(%)	
Bi ₂ Sn ₂ O ₇	200	400	300 W	60	37.0	[1]
CQDs-FeOOH	100	400	300 W	30	34.0	[2]
BiOBr-graphene	100	400	300 W	30	40.0	[3]
Bi ₂ O ₂ CO ₃ -g-C ₃ N ₄	100	400	300 W	30	34.8	[4]
Bi@BiOSi	200	450	150 W	30	50.2	[5]
CN-OLa	100	500	150 W	30	50.4	[6]
LaFeO ₃ -SrTiO ₃	100	400	300 W	30	40.0	[7]
g-C ₃ N ₄ /LaCO ₃ OH	100	400	300 W	30	30.3	[8]
$SrFe_{x}Ti1_{-x}O_{3-\delta}$	100	400	300 W	30	35.0	[9]
OV-Bi ₂ O ₂ CO ₃	200	600	150 W	30	50.2	[10]
BiOCl/PPy	100	600	300 W	30	28.0	[11]
BiOBr-3C	200	600	150 W	30	38.7	[12]
PI-g-C ₃ N ₄	50	600	300 W	50	47.0	[13]
Au@CN	200	500	150 W	30	41.0	[14]
N-TiO ₂ /g-C ₃ N ₄	200	600	300 W	30	46.1	[15]

S11. Table S1 Data comparison of photocatalytic NO removal over different catalysts.

$\mathbf{R} = \mathbf{C} \mathbf{N} / \mathbf{A} \mathbf{n} / \mathbf{T} \mathbf{n} \mathbf{L} \mathbf{n} \mathbf{S}$	100	(00	150 W	20	50.5	
$g-C_3N_4/Au/2nIn_2S_4$	100	000	300 W	30	39.7	I his work

S12 .	Table S2 Dat	a comparison	of photocata	lytic CO_2	reduction of	over different ca	talysts.
--------------	--------------	--------------	--------------	--------------	--------------	-------------------	----------

Catalyst	Experimental system	Light type	Products	Ref	
		(Xe lamp)	(µmol h ⁻¹ g ⁻¹)		
In ₂ S ₃ -CuInS ₂	CoCl ₂ , 2,2-bipyridine,	300 W	CO: 19	[17]	
	TEOA, MeCN				
g-C ₃ N ₄	CoCl ₂ , 2,2-bipyridine,	300 W	CO: 6	[18]	
	TEOA, MeCN				
BCN	CoCl ₂ , 2,2-bipyridine,	300 W	CO: 94	[19]	
	TEOA, MeCN				
Nitrogen-rich g-	CoCl ₂ , 2,2-bipyridine,	300 W	CO: 103.6	[20]	
C ₃ N ₄ nanotubes	TEOA, MeCN				
UiO-66/CNNS	TEOA, MeCN	300W	CO: 9.79	[21]	
N-Ta ₂ O ₅	$[Ru(dcbpy)_2(CO)_2]^{2+}$	300 W	HCOOH: 70	[22]	
	TEOA				
RuRu' /NS-C ₃ N ₄	Ag, EDTA·2Na	300 W	HCOO ⁻ : 57.5	[23]	
Helical g-C ₃ N ₄	CoCl ₂ , TEOA and	300 W	CO: 89	[24]	
	MeCN				
CeO ₂ homojunction	0.5 wt %Pt/0.5 wt %	300 W	CH4: 0.086	[25]	
	MnO_x , CO_2 and H_2O				
GaN nanowires array	0.5 wt %Pt, CO_2 and	300 W	CH ₄ : 14.8	[26]	
	H ₂ O vapor				

g-C ₃ N ₄ /Au/ZnIn ₂ S ₄	CoCl ₂ , 2,2-bipyridine, TEOA, MeCN	300 W	CO: 242.3	This work
CaTaO ₂ N	1.0 wt % Ag, CH ₃ OH, CO ₂ bubbled	500 W	CO: 0.35	[28]
$Cu_3(BTC)_2$ ($aTiO_2$	CO ₂ and H ₂ O vapor	300 W	CH ₄ : 2.6	[27]

S13. Reference

[1] Y. Lu, Y. Huang, J. Cao, W. Ho, Q. Zhang, D. Zhu, S. Lee, Insight into the Photocatalytic Removal of NO in Air over Nanocrystalline Bi₂Sn₂O₇ under Simulated Solar Light, *Ind. Eng. Chem. Res.* 2016, 55, 10609-10617.

[2] Y. Huang, Y. Gao, Q. Zhang, Y. Zhang, J. Cao, W. Ho, S. Lee, Biocompatible FeOOH-Carbon quantum dots nanocomposites for gaseous NO_x removal under visible light: Improved charge separation and High selectivity, *J. Hazard. Mater.* 2018, **354**, 54-62.

[3] Z. Ai, W. Ho, S. Lee, Efficient visible light photocatalytic removal of NO with BiOBr-graphene nanocomposites, *J. Phys. Chem. C* 2011, **115**, 25330-25337.

[4] Z. Wang, Y. Huang, W. Ho, J. Cao, Z. Shen, S. Lee, Fabrication of $Bi_2O_2CO_3/g-C_3N_4$ heterojunctions for efficiently photocatalytic NO in air removal: In-situ self-sacrificial synthesis, characterizations and mechanistic study, *Appl. Catal.*, *B* 2016, **199**, 123-133.

[5] X. Li, W. Zhang, J. Li, G. Jiang, Y. Zhou, S. Lee, F. Dong, Transformation pathway and toxic intermediates inhibition of photocatalytic NO removal on designed Bi metal@defective Bi₂O₂SiO₃, *Appl. Catal., B* 2019, **241**, 187-195.

[6] P. Chen, H. Wang, H. Liu, Z. Ni, J. Li, Y. Zhou, F. Dong, Directional electron delivery and enhanced reactants activation enable efficient photocatalytic air purification on amorphous carbon nitride co-functionalized with O/La, *Appl. Catal., B* 2019, **242**, 19-30.

[7] Q. Zhang, Y. Huang, S. Peng, Y. Zhang, Z. Shen, J. Cao, W. Ho, S. Lee, D. Pui, Perovskite LaFeO₃-SrTiO₃ composite for synergistically enhanced NO removal under visible light excitation, *Appl. Catal., B* 2017, **204**, 346-357.

[8] Z. Wang, H. Yu, C. Long, M. Chen, J. Cao, W. Ho, S. Lee, In situ $g-C_3N_4$ self-sacrificial synthesis of a $g-C_3N_4/LaCO_3OH$ heterostructure with strong interfacial charge transfer and separation for photocatalytic NO removal, *J. Mater. Chem. A* 2018, **6**, 972-981.

[9] Q. Zhang, Y. Huang, S. Peng, T. Huang, J. Cao, W. Ho, S. Lee, Synthesis of $SrFe_xTi_{1-x}O_{3-\delta}$ nanocubes with tunable oxygen vacancies for selective and efficient photocatalytic NO oxidation, *Appl. Catal. B* 2018, **239**, 1-9.

[10] H. Liu, P. Chen, X. Yuan, Y. Zhang, H. Huang, L. Wang, F. Dong, Pivotal roles of artificial oxygen vacancies in enhancing photocatalytic activity and selectivity on Bi₂O₂CO₃ nanosheets, *Chinese J. Catal.* 2019, **40**, 620-630.

[11] Z. Zhao, Y. Cao, F. Dong, F. Wu, B. Li, Q. Zhang, Y. Zhou, The activation of oxygen through oxygen vacancies in BiOCl/PPy to inhibit toxic intermediates and enhance the activity of photocatalytic nitric oxide removal, *Nanoscale* 2019, **11**, 6360-6367.

[12] J. Liao, L. Chen, M. Sun, B. Lei, X. Zeng, Y. Sun, F. Dong, Improving visible-light-driven photocatalytic NO oxidation over BiOBr nanoplates through tunable oxygen vacancies, *J. Catal.* 2018, **39**, 779-789.

[13] G. Dong, L. Yang, F. Wang, L. Zang, C. Wang, Removal of Nitric Oxide through Visible Light Photocatalysis by g-C₃N₄ Modified with Perylene Imides, *ACS Catal.*, 2016, 6, 6511-6519.
[14] K. Li, Wen Cui, J. Li, Y. Sun, Y. Chua, Guang. Jiang, Y. Zhou, Y. Zhang, F. Dong, Tuning the reaction pathway of photocatalytic NO oxidation process to control the secondary pollution on monodisperse Au nanoparticles@ g-C₃N₄, *Chem. Eng. J.*, 2019, **378**, 122184.

[15] G. Jiang, J. Cao, M. Chen, X. Zhang, F. Dong, Photocatalytic NO oxidation on N-doped TiO₂/g-C₃N₄ heterojunction: enhanced efficiency, mechanism and reaction pathway, *Appl. Surf. Sci.*, 2018, **458**, 77-85.

[16] F. Dong, Y. Li, W. Ho, H. Zhang, M. Fu, Z. Wu, Synthesis of mesoporous polymeric carbon nitride exhibiting enhanced and durable visible light photocatalytic performance, *Chin. Sci. Bull.*, 2014, **59**, 688-698.

[17] J. Yang, X. Zhu, Z. Mo, J. Yi, J. Yan, J. Deng, Y. Xu, Y. She, J. Qian, H. Xu, H. Li, A multidimensional In₂S₃-CuInS₂ heterostructure for photocatalytic carbon dioxide reduction, *Inorg. Chem. Front.* 2018, **5**, 3163-3169.

[18] J. Lin, Z. Pan, X. Wang, Photochemical Reduction of CO₂ by Graphitic Carbon Nitride Polymers, ACS Sustainable Chem. Eng. 2014, 2, 353-358.

[19] C. Huang, C. Chen, M. Zhang, L. Lin, X. Ye, S. Lin, M. Antonietti, X. Wang, Carbon-doped BN nanosheets for metal-free photoredox catalysis, *Nat. Commun.* 2015, 6, 7698.

[20] Z. Mo, X. Zhu, Z. Jiang, Y. Song, D. Liu, H. Li, X. Yang, Y. She, Y. Lei, S. Yuan, H. Li, L. Song, Q. Yan, H. Xu, Porous nitrogen-rich g-C₃N₄ nanotubes for efficient photocatalytic CO₂ reduction, *Appl. Catal.*, *B* 2019, **256**, 117854.

[21] L. Shi, T. Wang, H. Zhang, K. Chang, J. Ye, Electrostatic Self-Assembly of Nanosized Carbon Nitride Nanosheet onto a Zirconium Metal-Organic Framework for Enhanced Photocatalytic CO₂ Reduction, *Adv. Funct. Mater.* 2015, **25**, 5360-5367.

[22] S. Sato, T. Morikawa, S. Saeki, T. Kajino, T. Motohiro, Visible-Light-Induced Selective CO₂
 Reduction Utilizing a Ruthenium Complex Electrocatalyst Linked to a p-Type Nitrogen-Doped
 Ta₂O₅ Semiconductor, *Angew. Chem. Int. Ed.* 2010, 49, 5101-5105.

[23] R. Kuriki, M. Yamamoto, K. Higuchi, Y. Yamamoto, M. Akatsuka, D. Lu, S. Yagi, T.

Yoshida, O. Ishitani, K. Maeda, Robust Binding between Carbon Nitride Nanosheets and a Binuclear Ruthenium(II) Complex Enabling Durable, Selective CO₂ Reduction under Visible Light in Aqueous Solution, *Angew. Chem. Int. Ed.* 2017, **56**, 4867-4871.

[24] Y. Zheng, L. Lin, X. Ye, F. Guo, X. Wang, Helical graphitic carbon nitrides with photocatalytic and optical activities, *Angew. Chem. Int. Ed.* 2014, **53**, 11926-11930.

[25] P. Li, Y. Zhou, Z. Zhao, Q. Xu, X. Wang, M. Xiao, Z. Zou, Hexahedron Prism-Anchored Octahedronal CeO₂: Crystal Facet-Based Homojunction Promoting Efficient Solar Fuel Synthesis, *J. Am. Chem. Soc.* 2015, **137**, 9547-9550.

[26] B. AlOtaibi, S. Fan, D. Wang, J. Ye, Z. Mi, Wafer-Level Artificial Photosynthesis for CO₂
 Reduction into CH₄ and CO Using GaN Nanowires, *ACS Catal.* 2015, 5, 5342-5348.

[27] R. Li, J. Hu, M. Deng, H. Wang, X. Wang, Y. Hu, H. Jiang, J. Jiang, Q. Zhang, Y. Xie, Y. Xiong, Integration of an inorganic semiconductor with a metal-organic framework: a platform for enhanced gaseous photocatalytic reactions, *Adv. Mater.* 2014, **26**, 4783-4788.

[28] W. Tu, Y. Zhou, Q. Liu, S. Yan, S. Bao, X. Wang, M. Xiao, Z. Zou, An In Situ Simultaneous Reduction-Hydrolysis Technique for Fabrication of TiO₂-Graphene 2D Sandwich-Like Hybrid Nanosheets: Graphene-Promoted Selectivity of Photocatalytic-Driven Hydrogenation and Coupling of CO₂ into Methane and Ethane, *Adv. Funct. Mater.* 2013, **23**, 1743-1749.