Supplementary Material

Post-modification of magnetic metal-organic frameworks with βcyclodextrin for efficient removal of fungicides from environmental

water

Ibrahim Abdelhai Senosy ^{1, 2} | Zhi-Heng Lu¹ | Talat Mahmoud Abdelrahman^{1, 3} | Mei-Nan Ou Yang¹ | Hao-Ming Guo¹ | Zhong- Hua Yang^{1, *} | Jian-Hong Li^{1, *}

¹College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan, 430070, China.

² Faculty of Agriculture, Department of Plant Protection, Fayoum University, Fayoum, 63514, Egypt.

³ Faculty of Agriculture, Department of Plant Protection, Al-Azhar University, Assiut, 71524, Egypt.

Corresponding author

Zhong-Hua Yang

E-mail address: yangzhonghua@mail.hzau.edu.cn

Tel.: +86 027 87286991 Fax: +86 027 87286991

Jian-Hong Li

E-mail address: jianhl@mail.hzau.edu.cn

Tel.: +86 027 87286991 Fax: +86 027 87286991

TABLE OF CONTENTS

TEXT

Text S1. Preparation of Fe₃O₄@ β -CD

Text S2. Preparation of TFT cross-linked β -CD (TFN-CD):

FIGURES

- Fig. S1. TEM image of Fe₃O₄ (A) and HR-TEM of Fe₃O₄@MIL-100 (Fe) (B) and HR-TEM of Fe₃O₄@MIL-100 (Fe)/β-CD(C).
- Fig. S2. SEM image of Fe₃O₄(A), MIL-100 (Fe) (B), and Fe₃O₄ $@\beta$ -CD(C).
- Fig. S3. The FT-IR spectra of MIL 100 (Fe), β-CD, and TFT cross-linked β-CD (TFT-β-CD).
- Fig. S4. The ¹³C NMR of TFT cross-linked β -CD (TFT- β -CD).
- Fig. S5. The XRD pattern of β -CD, TFT cross-linked β -CD (TFT- β -CD), MIL-100(Fe) and Fe₃O₄@ β -CD.

Fig. S6. The typical chromatograms of actual lake water and wastewater.

TABLES

- Table S1. The nitrogen adsorption-desorption isotherms of Fe₃O₄@MIL-100 (Fe), and Fe₃O₄@MIL-100 (Fe)/ β -CD.
- Table S2. The chemical structures, Log P and pKa values of the four triazole fungicides.
- Table S3. The Langmuir Freundlish, and Temkin model parameters by Fe₃O₄@MIL-100 (Fe)/β-CD.
- Table S4. Kinetic parameters of pseudo-second order for adsorption by Fe₃O₄@MIL-100 (Fe)/ β -CD.

Text S1. Preparation of Fe₃O₄@β-CD

Fe₃O₄@ β -CD was first mixed with a solution tetrahydrofuran (50.0 mL) and DMF (6.0 mL) containing 1.23 g β -CD, 0.60 g of TFT, and sodium carbonate under nitrogen protection. Next, the above mixture was stirred homogeneously and refluxed under nitrogen protection at 85 °C for 24 h. After cooling down to room temperature, the resulting suspension was separated by external magnetic field, then the resulting product was washed to completely exclude residual catalyst K₂CO₃ with a hydrochloric acid solution (0.01 M) till no more bubbles cleared. After magnetic separation of the resulting product, Fe₃O₄@ β -CD was washed by suitable volume of distilled water, tetrahydrofuran, and dichloromethane, respectively. The final precipitate was vacuum dried at 45 °C and then Fe₃O₄@ β -CD was obtained.

Text S2. Preparation of TFT cross-linked β-CD (TFN-CD)

1.23 g β -CD, 0.60 g of TFT, and sodium carbonate were mixed with a solution tetrahydrofuran (50.0 mL) and DMF (6.0 mL) under nitrogen protection. Next, the above mixture was stirred homogeneously and refluxed under nitrogen protection at 85 °C for 24 h. After cooling down to room temperature, the resulting suspension was separated by centrifuge, then the resulting product was washed to completely exclude residual catalyst K₂CO₃ with a hydrochloric acid solution (0.01 M). TFN-CD was washed by suitable volume of distilled water, tetrahydrofuran, and dichloromethane, respectively. The final precipitate was vacuum dried at 45 °C.

Fig. S1. TEM image of Fe₃O₄ (A) and HR-TEM of Fe₃O₄@MIL-100 (Fe) (B) and HR-TEM of Fe₃O₄@MIL-100 (Fe)/ β -CD(C).

Fig. S2. SEM image of $Fe_3O_4(A)$, MIL-100 (Fe) (B), and $Fe_3O_4@\beta$ -CD(C).

Fig. S3. The FT-IR spectra of MIL 100 (Fe), β -CD, and TFT cross-linked β -CD (TFT- β -CD).

Fig. S4. The ¹C NMR of TFT cross-linked β -CD (TFT- β -CD).

Fig. S5. The XRD pattern of β -CD, TFT cross-linked β -CD (TFT- β -CD), MIL-100(Fe) and Fe₃O₄@ β -CD.

Fig. S6. The typical chromatograms of actual lake water and wastewater.

Table S1. The nitrogen adsorption-desorption isotherms of Fe₃O₄@MIL-100 (Fe), and Fe₃O₄@MIL-100 (Fe)/ β -CD.

Sample	SBET	BJH Pore size	BJH Volume size
	$(m^2 \cdot g^{-1})$	(nm)	$(m^3 \cdot g^{-1})$
Fe ₃ O ₄ @MIL-100 (Fe)	330.89	3.25	0.12
Fe ₃ O ₄ @MIL-100 (Fe)/β-CD	2.60	1.73	0.010

Analytes	Structure	Log P ^a	р <i>Ка</i> ^ь
Tebuconazole		3.77 ± 0.55	3.27 13.70
Epoxiconazole		3.30 ± 0.71	2.75 ± 0.10
Flusilazole	F-CH3 Si-CH3 N-N N-N N N	3.70	3.27
Triadimefon	CI	2.77	2.70

Table S2. The chemical structures, Log *P* and p*Ka* values of the four triazole fungicides.

^{a,b} Values from Scifinder Scholar Database, calculated by Advanced Chemistry Development (ACD/Labs) Software V11.02 (© 1994-2019 ACD/Labs).

Fable S3. The Langmuir Freundlish, and Temkin model parameters by Fe ₃ O ₄ @MIL-10)0
[Fe)/β-CD.	

Model	Parameters	Tebuconzole	Flusilazole
	$q_m(mg/g)$	64.52	102.10
Langmuir	b (L/mg)	0.332	0.0559
	R ²	0.9907	0.9955
	$K_F (L/mg)$	21.18	18.62
Freundlish	n	2.80	2.17
	\mathbb{R}^2	0.9806	0.9712

Table S4. Kinetic parameters of pseudo-second order for adsorption by Fe₃O₄@MIL-100 (Fe)/β-CD.

Model	Parameters	Tebuconzole	Flusilazole
pseudo-first order	q_e (mg g ⁻¹)	0.96253	1.23898
	$\frac{K_1}{(\min^{-1})}$	-0.030	-0.0322
	R ²	0.67554	0.56435
pseudo-second order	q_e (mg g ⁻¹)	55.74	58.00
	K_2 (g mg ⁻¹ min ⁻¹)	-0.02168	-0.4797
	h	-67.3	-1615
	\mathbb{R}^2	0.99951	0.99996