The adsorption and oxidation of SO_{2} on MgO surface: Experimental and DFT calculation studies

Honghong Wang ${ }^{1}$, Cheng Zhong ${ }^{1,3}$, Qingxin Ma ${ }^{1,2,3^{*}}$, Jinzhu Ma ${ }^{1,2,3}$, Hong He ${ }^{1,2,3}$
${ }^{1}$ State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
${ }^{2}$ Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
${ }^{3}$ College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China

Corresponding Author

*Qingxin Ma (qxma@rcees.ac.cn)
*Tel: 86-10-62849508; fax: 86-10-62849508

Fig. S1 Another two optimized configurations of SO_{2} on perfect $\mathrm{MgO}(00)$ surface

Table S1. The IR vibrational frequencies and adsorption energies of adsorbed SO_{2} at the MgO (001) surface (frequencies in cm^{-1}, adsorption energies in eV).

Modes	I	II	III	SO $_{2}$
SO_{2} frequency	δ	553	484	493
v_{s}	988	991	1077	1089
$v_{\text {as }}$	1056	1201	1270	1277
S-O bond length (\AA)	1.47	1.45	1.44	1.43
Adsorption Energy (eV)	-1.03	-0.31	-0.20	-

Freq $3768 \mathrm{~cm}^{-1}$

Freq $3724 \mathrm{~cm}^{-1}$

Freq $3073 \mathrm{~cm}^{-1}$

Fig. S2 The optimized structures of surface OH on $\mathrm{MgO}(100)$ surface

(a)

(b)

00

$E_{\text {ads }}=-0.14 \mathrm{eV}$

Fig. S3 The optimized structures and corresponding adsorption energies of O_{2}
adsorption on $\mathrm{MgO}(100)$ surface

Fig. S4 Charge Density Difference (CDD) of SO_{2} on a plane of MgO surface (a) 3D,
the yellow and blue represent the increasment and decrement of electron density,
respectively (b) 2D plot of CDD on $\mathrm{MgO}(001)$ surface, unit is e/bohr ${ }^{3}$.

Fig. S5 The optimized adsorption configurations of NO_{2} on $\mathrm{MgO}(100)$ surface

Fig. S6 Dynamic changes in the in situ DRIFTS spectra of the CaO sample as a function
of time with a flow of $200 \mathrm{ppmv} \mathrm{SO}_{2}+200 \mathrm{ppmv} \mathrm{NO}_{2}+20 \% \mathrm{O}_{2}+80 \% \mathrm{~N}_{2}$ at 303 K .
Total flow rate was $100 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$.

