The adsorption and oxidation of SO₂ on MgO surface: Experimental and DFT calculation studies

Honghong Wang¹, Cheng Zhong^{1,3}, Qingxin Ma^{1,2,3}*, Jinzhu Ma^{1,2,3}, Hong He^{1,2,3}

¹ State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

² Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China

³ College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China

Corresponding Author

*Qingxin Ma (qxma@rcees.ac.cn)

*Tel: 86-10-62849508; fax: 86-10-62849508

Fig. S1 Another two optimized configurations of SO₂ on perfect MgO(00) surface

Table S1. The IR vibrational frequencies and adsorption energies of adsorbed SO₂ at

	Modes	Ι	Π	III	SO ₂
SO_2 frequency	δ	553	484	493	492
	v _s	988	991	1077	1089
	v _{as}	1056	1201	1270	1277
S-O bond length (Å)		1.47	1.45	1.44	1.43
Adsorption Energy (eV)		-1.03	-0.31	-0.20	

the MgO (001) surface (frequencies in cm^{-1} , adsorption energies in eV).

Fig. S2 The optimized structures of surface OH on MgO(100) surface

Fig. S3 The optimized structures and corresponding adsorption energies of O₂

adsorption on MgO(100) surface

Fig. S4 Charge Density Difference (CDD) of SO₂ on a plane of MgO surface (a) 3D, the yellow and blue represent the increasment and decrement of electron density,

respectively (b) 2D plot of CDD on MgO(001) surface, unit is e/bohr³.

Fig. S5 The optimized adsorption configurations of NO₂ on MgO(100) surface

Fig. S6 Dynamic changes in the *in situ* DRIFTS spectra of the CaO sample as a function of time with a flow of 200 ppmv SO₂ + 200 ppmv NO₂ + 20% O₂ + 80% N₂ at 303 K. Total flow rate was 100 mL \cdot min⁻¹.