1 Electronic Supplementary Information

2

3 Insights Gained into Activated Sludge Nitrification through Structural and

4 Functional Profiling of Microbial Community Response to Starvation Stress

- 5 Jacob W. Metch^a, Hong Wang^b, Yanjun Ma^c, Jennifer H. Miller^d, Peter J. Vikesland^d,
- 6 Charles Bott^e, Matthew Higgins^f, Sudhir Murthy^g, Amy Pruden^d
- 7

8 Nitrospira reference sequences and OTUs of interest

9 N. moscoviensis 16S rRNA gene (GenBank: X82558.1 base pairs 521-773): 10 TACGAAGGTGGCAAGCGTTGTTCGGATTCACTGGGCGTACAGGGAGCGTAGG CGGTTGGGTAAGCCCTCCGTGAAATCTCCGGGCCTAACCCGGAAAGTGCAGA 11 12 GGGGACTGCTCGGCTTGAGGATGGGAGAGGAGCGCGGAATTCCCGGTGTAGC 13 GGTGAAATGCGTAGAGATCGGGAGGAAGGCCGGTGGCGAAGGCGGCGCTCT <u>14</u> 16 N. defluvii 16S rRNA gene (GenBank: DQ059545.1 base pairs 522-774): 17 TACGAAGGTGGCAAGCGTTGTTCGGATTCACTGGGCGTACAGGGTGTGTAGG 18 CGGTTTGGTAAGCCTTCTGTTAAAGCTTCGGGCCCAACCCGGAAAGCGCAGA 19 GGGTACTGCCAGGCTAGAGGGTGGGAGAGGAGCGCGGAATTCCCGGTGTAG 20 CGGTGAAATGCGTAGAGATCGGGAGGAAGGCCGGTGGCGAAGGCGGCGCTC $\frac{21}{22}$ TGGAACATACCTGACGCTGAGACACGAAAGCGTGGGGAGCAAACAGG 23 N. marina 16S rRNA gene (GenBank: X82559.1 base pairs 522-774): 24 TACGAAGGTGGCAAGCGTTGTTCGGATTTACTGGGCGTAAAGAGCACGTAGG 25 CGGTTGGGAAAGCCTTTTGGGAAATCTCCCGGCTTAACCGGGAAAGGTCGAG 26 AGGAACTATTCAGCTAGAGGACGGGGAGAGGAGCGCGGGAATTCCCGGTGTAG 27 CGGTGAAATGCGTAGATATCGGGAAGAAGGCCGGTGGCGAAGGCGGCGCTC <u>2</u>8 30 N. backiana 16S rRNA gene (GenBank: EU084879.1 base pairs 524-776): 31 TACGAAGGTGGCAAGCGTTGTTCGGATTTACTGGGCGTAAAGGGAGCGTAGG 32 CGGTTCGGTAAGACCGATGGGAAATCCCGGAGCTTAACTTCGGAAGGTCATC 33 GGTGACTGCCGGGCTAGAGGACGGGGAGAGGGGGGGGGAATTCCCGGTGTAG 34 CGGTGAAATGCGTAGAGATCGGGAGGAAGGCCGGTGGCGAAGGCGGCGCTC 35 TGGAACGTTCCTGACGCTGAGGCTCGAAAGCGTGGGGGAGCAAACAGG 37 N. calida 16S rRNA gene (GenBank: HM485589.1 base pairs 522-774): 38 TACGAAGGTGGCAAGCGTTGTTCGGATTTACTGGGCGTACAGGGTGCGTAGG 39 CGGTTCGGTAAGCCCTTCGGGAAAGCTCCGGGCTTAACCCGGAAAGGTCGGA

41 CGGTGAAATGCGTAGAGATCGGGAGGAAGGCCGGTGGCGAAGGCGGCGCTC 43 TGGAACGTTTCTGATGCTGAGGCACGAAAGCGTGGGGAGCAAACAGG 44 N. nitrosa 16S rRNA gene (European Nucleotide Archive: CZQA01000015.1 base pairs 45 522-774): 46 TACGAAGGTGGCAAGCGTTGTTCGGATTTACTGGGCGTACAGGGAGCGTAGG 47 CGGTTGGGTAAGCCCTCCGTGAAATCTCCGGGCCTAACCCGGAAAGTGCGGA 48 GGGGACTGCTCGGCTAGAGGATGGGAGAGGAGCGCGGAATTCCCGGTGTAG 49 CGGTGAAATGCGTAGAGATCGGGAGGAAGGCCGGTGGCGAAGGCGGCGCTC 30 TGGAACATTTCTGACGCTGAGGCTCGAAAGCGTGGGGAGCAAACAGG 52 *N. inopinata* 16S rRNA gene (European Nucleotide Archive: LN885086.1 base pairs 53 522-774): 54 TACGAAGGTGGCAAGCGTTGTTCGGATTTACTGGGCGTACAGGGAGCGTAGG 55 CGGTTGGGTAAGCCCTCCGTGAAATCTCCGGGCCTAACCCGGAAAGTGCGGA 56 GGGGACTGCTTGGCTAGAGGATGGGAGAGGAGCGCGGAATTCCCGGTGTAG 57 CGGTGAAATGCGTAGAGATCGGGAGGAAGGCCGGTGGCGAAGGCGGCGCTC ξĝ TGGAACATTTCTGACGCTGAGGCTCGAAAGCGTGGGGAGCAAACAGG 60 Leptospirillum ferroadiazotrophum 16S rRNA gene (GenBank: KT834983 base pairs 61 507-759): 62 GACAGGGGTGGCAAGCGTTGTTCGGAGTGACTGGGCGTAAAGGGTCTGTAGG 63 TGGTTTTTCAAGTCTTTGGTAAAAAGCCGTGGCTTAACCATGGTGAGGCCAAG GAGACTGGGAGACTCGAGGCTGGGAGAGGGGAAGCGGAATTTCTGGTGTAGC 64 65 GGTGAAATGCGTAGAGATCAGAAAGAAGGCCGGTGGCGAAGGCGGCTTCCT 69 GGAACAGACCTGACACTGAGAGACGAAAGCGTGGGGAGCAAACAGG 68 *Nitrospira* OTU A: 69 TACGAAGGTGGCAAGCGTTGTTCGGATTCACTGGGCGTACAGGGTGTGTAGG 70 CGGTTTGGTAAGCCTTCTGTTAAAGCTTCGGGCCCAACCCGGAAAGCGCAGA 71 GGGTACTGCCAGGCTAGAGGGTGGGAGAGGAGCGCGGAATTCCCGGTGTAG 72 CGGTGAAATGCGTAGAGATCGGGAGGAAGGCCGGTGGCGAAGGCGGCGCTC 73 TGGAACATACCTGACGCTGAGACACGAAAGCGTGGGGGAGCAAACAGG 75 Nitrospira OTU B: 76 TACGAAGGTGGCAAGCGTTGTTCGGATTTACTGGGCGTACAGGGAGCGTAGG 77 CGGTTGGGTAAGCCCTCCGTGAAATCTCCGGGCCTAACCCGGAAAGTGCGGA 78 GGGGACTGCTCGGCTAGAGGATGGGAGAGGAGCGCGGAATTCCCGGTGTAG 79 CGGTGAAATGCGTAGAGATCGGGAGGAAGGCCGGTGGCGAAGGCGGCGCTC 80 TGGAACATTTCTGACGCTGAGGCTCGAAAGCGTGGGGAGCAAACAGG

81

82 Supplementary Tables

Trial	Experimental Temp (°C)	Date of Collection	Collection Temp (°C)	Frequency of NPR tests	Samples selected for 16S rRNA amplicon sequencing	
14 °C Trial 1	14	4/7/2014	15.17	Days 2, 3, 5, 8, 11, 14, 18	Days 2, 3, 5, 8, 11, 14, 18	
20 °C Trial 1	20	12/2/2013	18.38	Days 2, 3, 5, 7, 10, 14, 18	Days 2, 3, 5, 7, 10, 14, 18	
30 °C Trial 1	30	2/19/2014	15.17	Days 2, 3, 5, 7, 9, 12, 16	Days 2, 3, 5, 7, 9, 12, 16	
14 °C Trial 2	14	3/20/2015	14.36	Days 2, 3, 5, 7, 10, 14, 18 Recovery for 6hr, 12hr, 24hr, 36hr, 48hr	INF, Days 0, 2, 7, 18, Recovery for 12hr, 48hr	
20 °C Trial 2	20	5/11/2015	20.49	Days 2, 3, 5, 7, 10, 14, 18 Recovery for 6hr, 12hr, 24hr, 36hr, 48hr	INF, Days 0, 2, 7, 18, Recovery for 12hr, 48hr	
27 °C Trial 1	27	6/23/2015	23.72	Days 2, 3, 5, 7, 10, 14, 18 Recovery for 6hr, 12hr, 24hr, 36hr, 48hr	INF, Days 0, 2, 7, 18, Recovery for 12hr, 48hr	
Note: IN after Sta	Note: INF- sample taken at influent of DC Water nitrification basin, "Fed for" samples are those taken after Starvation Reactor was dosed with ammonia					

83 Table S1 Seed sludge collection dates, temperatures and sampling details

84

86

87 Figure S1 Gene concentrations quantified in DNA extracted from MLSS samples

88 throughout all trials using qPCR of a) total 16S rRNA genes using universal primers

b) *amoA* gene encoding the ammonia monooxygenase enzyme used by bacteria for

- 90 oxidizing ammonia (AOBs) c) *Nitrospira* 16S rRNA targeting only *Nitrospira* species
- 91 and d) *Nitrobacter* 16S rRNA targeting only *Nitrobacter* species.
- 92
- 93

95 Figure S2 Correlation analysis between metabolic activity (NO_xPR and NPR) and

96 concentration of associated genes via qPCR. Statistical values are indicated in the

97 legend with significant p-values <0.05 and Spearman correlation coefficient (p) with

98 a value of 1 indicating perfect positive correlation and -1 indicating perfect negative correlation.

99

100

101

102 Figure S3 Comparison of microbial community composition of all conditions and

103 trials applied across this study. MDS ordination of unifrac distance matrix of OTU

- 104 table rarefied to lowest sample sequencing depth (38,000 sequences). Intensity of red
- 105 shading increases with time in Starvation Reactor, purple points indicate samples
- 106 taken from the influent of the DC Water nitrification basin sampled after mixing of
- 107 return activated sludge, blue points represent samples collected during the
- 108 "recovery" phase, after feeding of ammonium to the Starvation Reactor.

	Log Relativ 14 °C Ex	re Abundance		
	DNA		cDNA	
Taxonomy (OMathulanhile and	D2 D3 D5 D8 D11 D14 D18	Taxonomy (a)Nannomytic	D2 D3 D5 D8 D11 D14 D18	Alphaproteobacteria
(f)Methylophilaceae		(g)Nannocystis	-1.62 -1.52 -1.40 -1.62 -2.40 -2.93 -3.47	Deltaproteobacteria
(o)Sphingobacteriales	-1.30 -1.23 -1.13 -1.08 -1.23 -1.48 -1.7	0 (f)Methylocystaceae	-1.06 -1.05 -1.12 -1.10 -1.00 -0.99 -0.96	Gammaproteobacteria
(g.s)Methylotenera, mobilis	-1.16 -1.22 -1.37 -1.56 -1.57 -1.66 -1.7	0 (o)Myxococcales	-1.49 -1.63 -1.71 -1.88 -2.07 -2.34 -2.19	Unclassified Proteorbacteria
(c)Betaproteobacteria	-1.39 -1.45 -1.68 -2.06 -2.17 -2.18 -2.3	6 (f)Methylophilaceae	-1.52 -1.59 -1.71 -1.88 -1.96 -2.02 -2.08	Acidobacteria
(f)Cytophagaceae	-1.83 -1.70 -1.71 -1.43 -1.40 -1.46 -1.3	3 (c)Betaproteobacteria	-1.74 -1.85 -2.17 -2.36 -2.38 -2.74 -2.87	Actinobacteria
(g,s)Methylotenera, mobilis	-1.50 -1.54 -1.68 -1.90 -2.01 -2.01 -2.0	4 (o)Myxococcales	-1.71 -1.85 -1.87 -2.02 -2.36 -2.37 -2.65	Bacteroidetes
(g)Nitrospira	-1.54 -1.45 -1.45 -1.49 -1.38 -1.35 -1.2	9 (o)Myxococcales	-1.72 -1.87 -1.60 -1.63 -1.81 -1.95 -2.07	Cyanobacteria
(o)Sphingobacteriales	-2.29 -2.30 -2.04 -1.80 -1.76 -1.64 -1.6	(o)Myxococcales		Deinococcus-Thermus
(g)Nabella	-2.20 -2.10 -2.11 -1.91 -1.02 -1.70 -1.0 14 °C Fy	periment 2	-1.45 -1.55 -1.55 -1.04 -1.05 -1.02 -1.56	Nitrospirae
	DNA	permient 2	cDNA	Planctomucates
Taxonomy	INF D0 D2 D7 D18 F12 F48	Taxonomyonomy	INF D0 D2 D7 D18 F12 F48	Unidentified
(f)Methylophilaceae	-0.72 -0.81 -0.71 -0.87 -1.12 -1.09 -1.1	1 (o)Myxococcales	-1.32 -1.33 -1.20 -1.20 -2.07 -2.12 -2.44	(k) kingdom
(f)Saprospiraceae	-2.44 -2.33 -2.34 -1.89 -0.98 -0.98 -1.0	1 (o)Myxococcales	-1.43 -1.41 -1.10 -1.43 -2.02 -2.34 -2.14	(p) phylum
(c)Betaproteobacteria	-1.02 -1.03 -0.93 -1.31 -1.43 -1.37 -1.4	1 (c)Betaproteobacteria	-1.26 -1.27 -1.22 -1.61 -1.74 -2.42 -2.19	(c) class
(c)Deltaproteobacteria	-2.43 -2.42 -2.15 -1.54 -1.87 -1.89 -1.8	2 (c)Deltaproteobacteria	-1.99 -1.91 -1.67 -1.28 -1.65 -1.26 -1.41	(o) order
(g)Rhodoferax	-1.38 -1.43 -1.43 -1.59 -1.68 -1.59 -1.6	6 (g)Thermus	ND ND ND -3.07 -3.54 -2.64 -1.32	(f) family
(o)Myxococcales	-2.02 -1.88 -1.72 -1.84 -2.96 -2.89 -3.1	2 (o)Phycisphaerales	-2.32 -2.42 -2.55 -1.96 -1.89 -1.28 -1.83	(g) genus
(f)Saprospiraceae	-2.08 -2.01 -2.06 -1.76 -1.60 -1.70 -1.6	8 (g)Nitrospira	-1.85 -1.89 -1.46 -1.63 -1.33 -1.41 -2.43	(g,s) genus, species
(f)Fiavobacteriaceae		(g)Pseudomonas	-3.10 -3.28 -3.09 -2.69 -2.49 -2.00 -1.40	
(f)Chitinophagaceae	-2.08 -1.93 -1.86 -1.63 -1.65 -1.62 -1.6	4 (c)Nannocystis	-4.40 -4.50 ##### -5.45 -5.00 -2.46 -1.43	
		n oniment 1	100 - 101 - 1016 - 1017 - 5.00 - 2.70	ha i
	20 °C Ex	periment 1	cDNA	D# Days
Taxonomy	D2 D3 D5 D7 D10 D14 D18	Taxonomy	D2 D3 D5 D7 D10 D14 D18	F# Hours after feeding
(g)Pseudomonas	-1.87 -1.39 -1.49 -0.92 -0.94 -1.17 -1.1	9 (f)Methylocystaceae	-0.48 -0.53 -0.56 -0.49 -0.63 -1.02 -1.57	
(f)Methylophilaceae	-1.06 -0.99 -1.21 -1.39 -1.52 -1.64 -1.7	4 (o)MLE1-12	-2.24 -2.13 -1.78 -1.64 -1.47 -1.60 -2.17	Least Relative Abundance
(g)Bdellovibrio	-2.45 -3.15 -2.22 -2.18 -1.36 -1.11 -1.7	3 (o)Myxococcales	-1.61 -1.64 -1.71 -1.81 -1.98 -2.15 -2.58	
(f)Methylocystaceae	-1.21 -1.25 -1.36 -1.59 -1.58 -2.20 -3.1	5 (o)HOC36	-1.51 -1.55 -1.68 -1.77 -1.79 -1.89 -2.07	
(g)Nitrospira	-1.24 -1.27 -1.19 -1.36 -1.47 -1.25 -1.0	6 (o)Myxococcales	-1.66 -2.03 -2.46 -2.82 -2.86 -3.63 -4.28	
(f)Saprospiraceae	-1.00 -1.54 -1.94 -2.19 -2.48 -2.56 ND	(g)Rhizobiales	-1.29 -1.20 -1.33 -1.28 -1.21 -1.18 -1.68 -1.75 -1.83 -1.76 -1.99 -2.15 -2.44	
(f)Saprospiraceae	-1.78 -1.77 -1.69 -1.50 -1.66 -2.45 -1.9	3 (g)Nitrospira	-1.73 -1.73 -1.77 -1.66 -1.56 -1.55	Most Relative Abundance
(o)Sphingobacteriales	-213 -230 -183 -173 ND ND -45	8 (g)Bdellovibrio	-3.54 -3.98 -3.13 -2.74 -2.09 -1.91 -2.52	most relative reperiod
(c)Betaproteobacteria	-1.67 -1.78 -2.12 -2.27 -2.49 -2.17 -3.3	8 (k)Bacteria	-2.51 -2.35 -2.18 -2.07 -2.30 -1.92 -1.94	
	20 °C Ex	periment 2		
	DNA		cDNA	
Taxonomy	INF D0 D2 D7 D18 F12 F48	Taxonomy	INF D0 D2 D7 D18 F12 F48	
(f)Methylophilaceae		1 (g)Staphylococcus	ND -4.58 ND -3.15 ND -0.77 -3.05	
(c)Betaproteobacteria		(c)Phizobialos	-0.96 -0.92 -1.03 -0.91 -0.80 -2.30 -4.58	
(g)Nitrospira	-1.49 -1.46 -1.42 -1.38 -1.16 -1.94 -1.8	(o)HOC36	-1.16 -1.12 -1.09 -1.53 -2.09 -3.28 ND	
(g,s)Bacillus, cereus	ND ND ND -1.73 -1.78 -1.46 -1.8	6 (g)Meiothermus	ND -3.98 -4.58 -2.52 -2.51 -1.32 -1.13	
(o)Sphingobacteriales	-2.21 -1.82 -1.73 -1.55 -1.95 ND -2.3	2 (g)Thermus	-3.80 -4.10 -4.10 -2.12 -2.19 -1.61 -1.18	
(o)HOC36	-1.75 -1.66 -1.83 -2.44 -2.61 -3.22 -3.2	4 (g)Corynebacterium	ND ND ND ND ND -1.20 ND	
(g,s)Methylotenera, mobilis	-1.70 -1.68 -1.66 -1.87 -2.19 -2.44 -2.3	3 (g)Pseudomonas	-2.76 -3.68 -3.63 -1.59 -1.58 -1.24 -1.32	
(o)Sphingobacteriales	-2.61 -2.52 -2.50 -1.92 -1.64 -1.91 -2.3	2 (g)Anaerococcus	ND ND ND ND ND -1.30 ND	
(p)Proteobacteria	-2.94 -3.12 -3.02 -2.34 -1.82 -1.95 -1.7	(c)Betaproteobacteria	ND ND ND -2.12 -3.24 -1.65 -1.39	
	27 °C E	xperiment		
	DNA	-	cDNA	
Taxonomy	INF D0 D2 D7 D18 F12 F48	Taxonomy	INF D0 D2 D7 D18 F12 F48	
(o)DH61	-4.28 ND ND ND -0.91 -1.16 -1.2	(f)Methylocystaceae	-0.82 -0.69 -0.72 -0.87 -1.84 -1.98 -2.28	
(g)rseudomonas	ND -4.28 ND -3.18 ND -2.64 -1.0	(g)HOC26	-4.55 ND ND -3.88 -3.63 -2.55 -1.00	
(f)Methylocystaceae	-1.10 -1.20 -1.20 -1.30 -1.71 -1.88 -1.7	8 (a)DH61	ND ND ND -4.58 -1.06 -1.64 -1.38	
(2)Meiothermus	ND ND ND -1.24 ND ND -2.9	1 (o)Rhizobiales	-1.18 -1.17 -1.16 -1.27 -1.97 -1.88 -2.17	
(g)Thermus	ND ND ND -1.31 ND ND ND	(g)Hyphomicrobium	-2.60 -2.50 -2.45 -2.44 -1.85 -1.36 -1.12	
(f)Cytophagaceae	-2.04 -2.14 -1.93 -1.91 -1.37 -1.31 -1.7	0 (o)Myxococcales	-1.36 -1.45 -1.41 -1.52 -2.37 -2.47 -2.82	
(c)Betaproteobacteria	ND ND ND -1.43 -3.80 ND ND	(0)MLE1-12	-2.29 -2.39 -2.31 -1.34 -2.21 -2.32 -2.86	
(f)Saprospiraceae	-1.96 -1.87 -1.77 -2.04 -1.40 -1.40 -1.4	8 (f)Rhodocyclaceae	-3.98 -3.35 -3.80 -3.80 -4.58 -2.52 -1.52	
(g)Nitrospira	-1.30 -1.25 -1.37 -1.79 -1.38 -1.50 -1.5 20 °C F	3 (g,s)Hyphomicrobium, zavarzi mont	nii -2.22 -2.01 -1.98 -2.05 -1.97 -1.73 -1.43	
	DNA	xperiment	cDNA	
Taxonomy	D2 D3 D5 D7 D9 D12 D16	Taxonomy	D2 D3 D5 D7 D9 D12 D16	
(f)Methylophilaceae	-0.76 -0.98 -1.31 -1.47 -1.79 -1.67 -2.0	4 (f)Methylocystaceae	-0.80 -0.77 -0.94 -1.12 -1.30 -1.77 -2.40	
(f)Sphingobacteriaceae	ND ND ND ND -0.91 -1.11 -1.3	0 (g)Nitrospira	-1.44 -1.45 -1.29 -1.40 -1.25 -1.14 -1.00	
(g)Pseudomonas	-1.79 -1.60 -1.02 -1.49 -0.81 -1.13 -1.1	6 (g)Pseudomonas	-2.96 -2.44 -2.09 -1.26 -1.45 -1.40 -1.39	
(g,s)Methylotenera, mobilis	-1.35 -1.45 -1.84 -2.58 -2.47 -2.90 -2.9	5 (o)MLE1-12	-1.63 -1.31 -1.28 -1.62 -1.86 -2.02 -2.76	
(g)Nitrospira	-1.38 -1.30 -1.20 -1.14 -1.13 -1.11 -1.0	(o)Myxococcales	-1.28 -1.80 -2.17 -2.76 -2.96 -2.98 -2.82	
(r)Methylocystaceae		(o)HOC26		
(g)Ceothrix	-1.00 -1.01 -1.00 -2.13 -2.12 -2.48 -2.3	(a)Myxococcales	-1.41 -1.03 -1.77 -1.79 -1.88 -2.10 -2.27	
(b)Sphingobacteriales	-2.73 ND ND -1.86 -2.00 -2.24 -2.34 -2.0	(g)Nannocystis	-1.50 -1.70 -1.61 -1.49 -1.75 -2.22 -2.75	
(f)Sphingobacteriaceae	ND ND -215 -158 -214 -213 ND	(g s)Bacillus cereus	ND ND -3.63 -1.80 -1.74 -1.96 -1.89	
I I I I I I I I I I I I I I I I I I I	110 110	remotivite intervention of CICUD		

109

- 110 Figure S4 Ten most variable OTUs in each trial and nucleic acid type (DNA or
- 111 cDNA). Values are log relative abundance (normalized to sequencing depth
- 112 (38,000)). Heat mapping for each OTU indicates behavior of OTU in that trial
- 113 (intensity of color corresponds to relative abundance).
- 114