Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

Biodegradation and attenuation of MIB and 2,4-D in drinking water biologically

active sand and activated carbon filters

Kyle K. Shimabuku^{†*}, Thomas L. Zearley[†], Katherine S. Dowdell, R. Scott Summers

University of Colorado at Boulder, Department of Civil, Environmental, and Architectural

Engineering, UCB 428, Boulder, CO 80309, USA

[†]Co-first authors

*Corresponding author. Email: <u>kyle.shimabuku@colorado.edu</u>

Contents

Three figures

•	SI Figure S1. Experimental filter design and setup.	Page 2
•	SI Figure S2. TOrC percent removals in the "abiotic" sand filter (Sand A)	
	and TOC percent removals in the Sand A and "abiotic" GAC filter (GAC	
	A).	Page 3
•	SI Figure S3. 2,4-D concentrations and removals in biological GAC	
	(BAC), "abiotic" GAC (GAC A), and biological sand (Sand B) during	
	increasing influent concentrations.	Page 4

SI Figure S1. Experimental filter design and setup.

SI Figure S2. TOrC percent removals in the "abiotic" sand filter (Sand A) (a) and TOC percent removals in the Sand A filter and "abiotic" GAC filter (GAC A) (b).

SI Figure S3. 2,4-D influent (solid) and effluent (open) concentrations (a) and percent removals (b) in biological GAC (BAC), "abiotic" GAC (GAC A), and biological sand (Sand B) during increasing influent concentrations.