Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

Importance of Controlling Phosphate Concentration in Nitritation-Anammox

Reactor Operation

Sen Yang¹, Shengnan Xu¹, Anna P. Florentino¹, Abdul Mohammed², Nicholas J. Ashbolt³ and Yang Liu^{1*}

1. University of Alberta, Department of Civil and Environmental Engineering, Edmonton,

Alberta, Canada T6G 1H9.

- 2. EPCOR Water Services Inc. Edmonton, Alberta, Canada.
- 3. University of Alberta, School of Public Health, Edmonton, Alberta, Canada T6G 2R3.

* Corresponding author, Yang Liu, Ph.D., P.Eng.

Department of Civil and Environmental Engineering

7-263 Donadeo Innovation Centre for Engineering

University of Alberta

Edmonton, Alberta, Canada T6G 1H9

yang.liu@ualberta.ca

			Conditions			
Trial1	20X dilution	4X dilution	2X dilution	Pre-Ostara	Pre-Ostara	Pre-Ostara
	Pre-Ostara	Pre-Ostara	Pre-Ostara	supernatant	supernatant	supernatant+2
	supernatant	supernatant	supernatant		+110mgP/L	10mg P/L
					of synthetic P	synthetic P
Trial 2	2X dilution	Post-Ostara	Post-Ostara	Post-Ostara	Post-Ostara	Post-Ostara
	Post-Ostara	supernatant+3	supernatant+9	supernatant+2	supernatant+3	supernatant+4
	supernatant	0 mgP/L	0 mgP/L	10 mgP/L	20 mgP/L	20 mgP/L
		synthetic P	synthetic P	synthetic P	synthetic P	synthetic P
Final Phosphorus	12	60	120	240	350	450
concentration						
(mg/L)						

Table S1. Phosphate concentrations in the test of the short-term impacts.

	Primer	Nucleotides sequence 5'-3'	Target	References
Anammox	AnnirS379F	TCTATCGTTGCATCGCATTT	AMX nirS gene	1, 2
	AnnirS821R	GGATGGGTCTTGATAAACA		
AOB	amoA-1F	GGGGTTTCTACTGGTGGT	amoA gene of	3
			betaproteobacteria	
			AOB	
	amoA-2R	CCCCTCTGCAAAGCCTTCTTC		
NOB	Nitro 1198f	ACCCCTAGCAAATCTCAAAAAACCG	Nitrobacter spp.	4
			16S rDNA	
	Nitro 1423r	CTTCACCCCAGTCGCTGACC		

Table S2. Primers required for q-PCR analysis and target genes.

Figure S1. Influent and effluent concentrations of ammonia nitrogen, nitrite nitrogen, nitrate nitrogen during four different operational phases.

Figure S2. Average influent and effluent COD concentrations during four different operational phases.

Figure S3. Inorganic nitrogen transformation concentrations in four typical SBR cycles with intermittent aeration applied during four different phases (a: 50% Pre-Ostara®; b:

100% Pre-Ostara®; c: 50% Post-Ostara® and d: 100% Post-Ostara®).

Figure S4. Schematic diagram of the IFAS reactor for one stage nitritation-anammox process

Reference

- M. Li, T. Ford, X. Li and J.-D. Gu, Cytochrome cd1-containing nitrite reductase encoding gene nirS as a new functional biomarker for detection of anaerobic ammonium oxidizing (Anammox) bacteria, *Environmental Science & Technology*, 2011, 45, 3547-3553.
- Z. Hu, D. Speth, K.-J. Francoijs, Z.-X. Quan and M. Jetten, Metagenome Analysis of a Complex Community Reveals the Metabolic Blueprint of Anammox Bacterium "Candidatus Jettenia asiatica", *Frontiers in Microbiology*, 2012, 3.
- N. Risgaard-Petersen, M. H. Nicolaisen, N. P. Revsbech and B. A. Lomstein, Competition between Ammonia-Oxidizing Bacteria and Benthic Microalgae, *Applied and Environmental Microbiology*, 2004, 70, 5528-5537.

H.-s. Kim, A. J. Schuler, C. K. Gunsch, R. Pei, J. Gellner, J. P. Boltz, R. G.
Freudenberg and R. Dodson, Comparison of Conventional and Integrated Fixed-Film Activated Sludge Systems: Attached- and Suspended-Growth Functions and Quantitative Polymerase Chain Reaction Measurements, *Water Environment Research*, 2011, 83, 627-635.