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S1. The operational parameters on the MD flux

Temperature

The water flux linearly increase with the increase of feed water temperature. When
the feed water increase from 50 to 95°C, the water flux almost increased from 6.13x107
to 3.77x10° m/s with the feed velocity increased from 0.4 (corresponding to Reynolds
number of 33.68) and the cold water velocity of 12.90 cm/s (corresponding to the
Reynolds number of 21.67) (Fig. S1). The flux was proportional to the vapor pressure
across the membrane. According to Antoine equation, the vapor pressure of pure water
(Py) at the liquid—vapor interface exponentially increased with temperature [1, 2].
Therefore, the vapor pressure difference across the membrane increased and the driving
force increased as feed temperature increased. Moreover, viscosity of feed water
decrease with the increase of temperature, and thus decrease the mass transfer boundary
layer thickness and increase water flux.

Velocity

The feed and permeate water temperature was respectively maintained at 5 and 95
°C with the cold water velocity of 12.90 cm/s (corresponding to the Reynolds number
of 21.67). Under these conditions, water flux linearly increased from 3.56x10° to
5.90x10-% m/s with the feed velocity increased from 0.4 (corresponding to Reynolds
number of 33.68) to 1.45 cm/s (corresponding to Reynolds number of 121.85) (Fig.
S2). With feed velocity further increase of to 2.24 cm/s (corresponding to Reynolds
number of 188.13), the water flux only slightly increased to 6.07x10-% m/s. Previous
studies [3, 4] also indicated that permeate flux increased as feed velocity increased and
reach an asymptotic value when feed velocity increased. The optimal cross-flow

velocity was 1.5 cm/s for feed water and 12.90 cm/s for cold water.
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Fig.S. 1. Water flux change with the variation of feed water temperature.
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Fig.S. 2. Water flux change with the variation of cross-flow velocity of the feed water
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61 S2. The concentration factor for MD under different scenarios.
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63 Fig.S. 3. Concentration factors of MD process with different pretreatment as the feed
64 water.
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66 S3. The elemental composition of crystallization on the membrane surface
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Fig.S. 4. The elements composition of the crystallization in the membrane surface (a)
Raw water (b) Pretreated by coagulation (c¢) Pretreated by coagulation+UF1 (d)
Pretreated by coagulation+UF1+UF2.
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