Screen versus cyclone for improved capacity and robustness for sidestream and mainstream deammonification

Tim Van Winckel ^{a,b,c}, Siegfried E. Vlaeminck ^{a,d*}, Ahmed Al-Omari ^b, Benjamin Bachmann ^e, Belinda Sturm ^c, Bernhard Wett ^f, Imre Takács ^g, Charles Bott ^h, Sudhir N. Murthy ⁱ and Haydée De Clippeleir ^b

^a Center of Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Gent, Belgium

^b District of Columbia Water and Sewer Authority, Blue Plains Advanced Wastewater Treatment Plant, 5000 Overlook Ave, SW Washington, DC 20032, USA

^c Department of Civil, Environmental and Architectural engineering, The University of Kansas, KS, USA

^d Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Antwerpen, Belgium

^e Department of Microbiology; University of Innsbruck, Austria

^f ARA consult GmbH, Austria

^g Dynamita SARL, France

^h Hampton Roads Sanitation District, VA, USA

^{*i*} New Hub, VA, USA

* Corresponding author: siegfried.vlaeminck@uantwerpen.be

Supplemental B

Capacity in sidestream can be estimated by the volumetric ammonium removal rate (g NH₄⁺-N/m³/d), which can be calculated by dividing the AnAOB net growth rate by the AnAOB yield (g COD/g N) (Eq. B1). The AnAOB volumetric removal rate is obtained multiplying the net growth rate $\mu_{net,AnAOB}$ (d⁻¹) with the AnAOB concentration in the reactor X_{AnAOB} (g COD/m³).

$$r_{V,AnAOB} = \frac{\mu_{netAnAOB} * X_{AnAOB}}{Y_{AnAOB}}$$
(B1)

The AnAOB concentration can be determined by solving an AnAOB-specific substrate mass balance for ammonium (Eq B2.) (Metcalf & Eddy, 2003):

$$X_{AnAOB} = \left(\frac{\theta_{AnAOB}}{HRT}\right) \left(\frac{Y_{AnAOB} * (S_o - S_{out})}{1 + \theta_{AnAOB} * b_{AnAOB}}\right)$$
(B2)

Where θ_{AnAOB} is the SRT for AnAOB as calculated in Eq. 5 (d), HRT the hydraulic retention time of the reactor (d), S_o the influent substrate (g NH₄⁺-N/m³), S_{out} the residual substrate level (g NH₄⁺-N/m³), b_{AnAOB} the decay rate for AnAOB (d⁻¹), and Y_{AnAOB} the AnAOB yield (g COD/g N). Formation of ammonium through hydrolysis was not taken into consideration. Inserting Eq B2. in Eq B1. results in an equation independent of AnAOB concentration or yield (Eq. B3):

$$r_{V,AnAOB} = \mu_{net,AnAOB} \left(\frac{\theta_{AnAOB}}{HRT} \right) \left(\frac{(S_o - S_{out})}{1 + \theta_{AnAOB} * b_{AnAOB}} \right)$$
(B3)