Screen versus cyclone for improved capacity and robustness for sidestream and mainstream deammonification Tim Van Winckel ^{a,b,c}, Siegfried E. Vlaeminck ^{a,d*}, Ahmed Al-Omari ^b, Benjamin Bachmann ^e, Belinda Sturm ^c, Bernhard Wett ^f, Imre Takács ^g, Charles Bott ^h, Sudhir N. Murthy ⁱ and Haydée De Clippeleir ^b - ^a Center of Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Gent, Belgium - ^b District of Columbia Water and Sewer Authority, Blue Plains Advanced Wastewater Treatment Plant, 5000 Overlook Ave, SW Washington, DC 20032, USA - ^c Department of Civil, Environmental and Architectural engineering, The University of Kansas, KS, USA - ^d Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Antwerpen, Belgium - ^e Department of Microbiology; University of Innsbruck, Austria - f ARA consult GmbH, Innsbruck, Austria - g Dynamita SARL, France - ^h Hampton Roads Sanitation District, VA, USA - i New Hub, VA, USA - * Corresponding author: siegfried.vlaeminck@uantwerpen.be ## **Supplemental D:** **Table D1.** Kinetic parameters used in model. Adapted from the calibrated model in Al-Omari et al. (2015). | Parameter | Unit | AOB | NOB | AnAOB | |-------------|----------------------|------------|------------|--------| | μ_{max} | d^{-1} | 0.9 | 0.7 | 0.1 | | K_{NH_4} | mg N L ⁻¹ | 0.7 | - | 0.5 | | K_{NO_2} | mg N L-1 | - | 0.05 | 0.5 | | K_o | $mg O_2 L^{-l}$ | 0.4 (0.25) | 0.14 (0.5) | - | | d_{aer} | d^{-1} | 0.17 | 0.17 | 0.019 | | d_{an} | d^{-1} | 0.08 | 0.08 | 0.0095 |