Screen versus cyclone for improved capacity and robustness for sidestream and mainstream deammonification

Tim Van Winckel ^{a,b,c}, Siegfried E. Vlaeminck ^{a,d*}, Ahmed Al-Omari ^b, Benjamin Bachmann ^e, Belinda Sturm ^c, Bernhard Wett ^f, Imre Takács ^g, Charles Bott ^h, Sudhir N. Murthy ⁱ and Haydée De Clippeleir ^b

- ^a Center of Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
- ^b District of Columbia Water and Sewer Authority, Blue Plains Advanced Wastewater Treatment Plant, 5000 Overlook Ave, SW Washington, DC 20032, USA
- ^c Department of Civil, Environmental and Architectural engineering, The University of Kansas, KS, USA
- ^d Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Antwerpen, Belgium
- ^e Department of Microbiology; University of Innsbruck, Austria
- f ARA consult GmbH, Innsbruck, Austria
- g Dynamita SARL, France
- ^h Hampton Roads Sanitation District, VA, USA
- i New Hub, VA, USA
- * Corresponding author: siegfried.vlaeminck@uantwerpen.be

Supplemental D:

Table D1. Kinetic parameters used in model. Adapted from the calibrated model in Al-Omari et al. (2015).

Parameter	Unit	AOB	NOB	AnAOB
μ_{max}	d^{-1}	0.9	0.7	0.1
K_{NH_4}	mg N L ⁻¹	0.7	-	0.5
K_{NO_2}	mg N L-1	-	0.05	0.5
K_o	$mg O_2 L^{-l}$	0.4 (0.25)	0.14 (0.5)	-
d_{aer}	d^{-1}	0.17	0.17	0.019
d_{an}	d^{-1}	0.08	0.08	0.0095