Screen versus cyclone for improved capacity and robustness for sidestream and mainstream deammonification

Tim Van Winckel ^{a,b,c}, Siegfried E. Vlaeminck ^{a,d*}, Ahmed Al-Omari ^b, Benjamin Bachmann ^e, Belinda Sturm ^c, Bernhard Wett ^f, Imre Takács ^g, Charles Bott ^h, Sudhir N. Murthy ⁱ and Haydée De Clippeleir ^b

^a Center of Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Gent, Belgium

^b District of Columbia Water and Sewer Authority, Blue Plains Advanced Wastewater Treatment Plant, 5000 Overlook Ave, SW Washington, DC 20032, USA

^c Department of Civil, Environmental and Architectural engineering, The University of Kansas, KS, USA

^d Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Antwerpen, Belgium

^e Department of Microbiology; University of Innsbruck, Austria

^f ARA consult GmbH, Austria

^g Dynamita SARL, France

^h Hampton Roads Sanitation District, VA, USA

^{*i*} New Hub, VA, USA

* Corresponding author: siegfried.vlaeminck@uantwerpen.be

Supplemental F

Figure F1. Sidestream deammonification sludge passed through a screen. From left to right: Mixed liquor, pass-through (reject) and retained.

Figure F2. Sidestream deammonification sludge passed through a cyclone. From left to right: Mixed liquor, overflow (reject) and underflow (retained).

Figure F3 Mainstream deammonification sludge passed through a screen. From left to right: overflow (reject) and underflow (retained).