Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2019

## **Electronic Supplementary Information**

## Degradation of Ibuprofen and Acetylsulfamethoxazole by

### multi-walled Carbon Nanotube Catalytic Ozonation: Surface

## properties, kinetics and modeling

Mao-Shu Du<sup>1</sup>, Kuan-Po Chen<sup>1</sup> and Yi-Pin Lin<sup>1,2</sup>\*

<sup>1</sup>Graduate Institute of Environmental Engineering, National Taiwan University,

Taipei 10673, Taiwan

<sup>2</sup> NTU Research Center for Future Earth, National Taiwan University, Taipei 10673,

Taiwan

\*Corresponding author E-mail address: <u>yipinlin@ntu.edu.tw;</u> Tel.: 02-33664380

# Text S1: Method for the determination of rate constants for a macromolecule simultaneously reacting with ozone and serving as the initiator, promoter and inhibitor in the OH<sup>•</sup> chain reactions in water ozonation

The approach described by Yong and Lin<sup>1, 2</sup> integrated the following three classical models for water ozonation:

1. The transient steady-state concentration of OH<sup>•3</sup>:

$$[\cdot OH] = \frac{2k_1[OH^-] + \sum k_{I,i}[M_{I,i}]}{\sum k_{S,i}[M_{S,i}]} [O_3]$$
(S1)

where [ $\cdot$ OH] represents the transient steady-state concentration of OH<sup>•</sup>; k<sub>1</sub> represents the 2<sup>nd</sup>-order rate constant between OH<sup>-</sup> and ozone; [M<sub>I,i</sub>] and k<sub>I,i</sub> represent the concentration of the initiator and its 2<sup>nd</sup>-order rate constant with O<sub>3</sub>; [M<sub>S,i</sub>] and k<sub>S,i</sub> represent the concentration of the inhibitor and its 2<sup>nd</sup>-order rate constant with OH<sup>•</sup>, respectively.

2. The  $R_{ct}$  concept<sup>4</sup>:

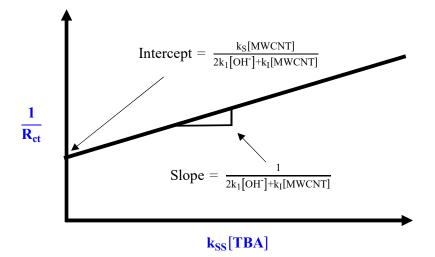
$$R_{ct} = \frac{\int [\cdot OH] dt}{\int [O_3] dt} = -\frac{\ln \frac{[pCBA]_t}{[pCBA]_0}}{k_{\cdot OH/pCBA} \int [O_3] dt}$$
(S2)

3. Pseudo-1<sup>st</sup> order ozone decomposition kinetics <sup>3</sup>:

$$-\frac{d[O_3]}{dt}\frac{1}{[O_3]} = k_{obs}$$
  
= 3k<sub>1</sub>[OH<sup>-</sup>]+k<sub>D</sub>[M<sub>D,i</sub>]+k<sub>I</sub>[M<sub>I,i</sub>]+k<sub>P</sub>[M<sub>P,i</sub>] $\left(\frac{2k_1[OH^-] + \sum k_{I,i}[M_{I,i}]}{\sum k_{S,i}[M_{S,i}]}\right)$  (S3)

Eq (S1) can be substituted to Eq (S2) to yield Eq (S4) assuming that pH value (or  $[OH^-]$ ) and the concentrations of initiator ( $[M_{I,i}]$ ) and inhibitor ( $[M_{S,i}]$ ) do not change during the ozonation.

$$R_{ct} = \frac{\int \left(\frac{2k_1[OH^{-}] + \sum k_{I,i}[M_{I,i}]}{\sum k_{S,i}[M_{S,i}]}\right)[O_3]dt}{\int [O_3]dt} = \frac{2k_1[OH^{-}] + \sum k_{I,i}[M_{I,i}]}{\sum k_{S,i}[M_{S,i}]}$$
(S4)

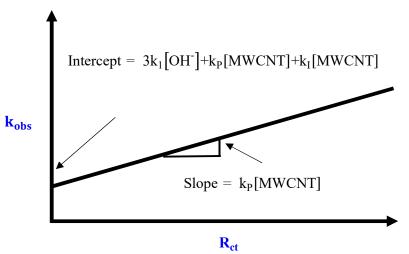

Assuming that MWCNT can simultaneously react with ozone and serve as the initiator, promoter and inhibitor in the OH<sup>•</sup> chain reactions, Eq (S4) can be rewritten as Eq (S5) with the addition of *tert*-butanol as an external inhibitor (denoted as S with a rate constant of  $k_{SS}$  with OH<sup>•</sup>) in the system <sup>1</sup>.

$$R_{ct} = \frac{2k_1[OH^-] + k_I[MWCNT]}{k_{SS}[S] + k_S[MWCNT]}$$
(S5)

where  $k_I$  represents the initiation rate constant of MWCNT (unit: L(mg CNT)<sup>-1</sup>s<sup>-1</sup>),  $k_S$  represents the inhibition rate constant of MWCNT (unit: L(mg CNT)<sup>-1</sup>s<sup>-1</sup>),  $k_{SS}$  represents the 2<sup>nd</sup>-order rate constant between *tert*-butanol and OH<sup>•</sup> ( $k_{SS}$ =6.0×10<sup>8</sup>

 $M^{-1}s^{-1}).^{5}$ The reciprocal of Eq (S5) gives Eq (S6).  $\frac{1}{R_{ct}} = \frac{k_{SS}[S] + k_{S}[MWCNT]}{2k_{I}[OH^{-}] + k_{I}[MWCNT]}$ (S6)

Ideally, a linear relationship exists between  $\frac{1}{R_{ct}}$  and  $k_{SS}[S]$  as shown below.  $k_I$  and  $k_S$  can then be determined from the slope and intercept, respectively.




In the same system, substituting Eq (S3) to Eq (S1) gives Eq (S7):

$$-\frac{d[O_3]}{dt}\frac{1}{[O_3]} = k_{obs} = 3k_1[OH^-] + k_D[MWCNT] + k_I[MWCNT] + k_P[MWCNT]R_{ct}$$
(S7)

where  $k_D$  represented the direct reaction rate constant of MWCNT,  $k_P$  represented the promotion rate constants of MWCNT (unit: L(mg CNT)<sup>-1</sup>s<sup>-1</sup>).

A linear relationship should exist between  $k_{obs}$  and  $R_{ct}$  as shown below.  $k_p$  and  $k_D$  can then be determined from the slope and intercept, respectively.



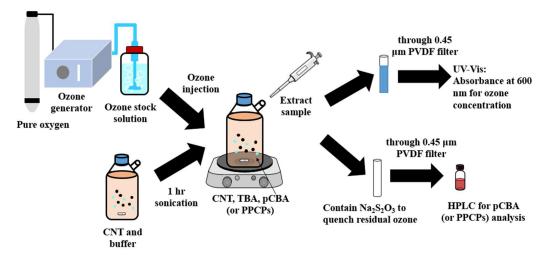



Figure S1. Schematic diagram of ozone experiments

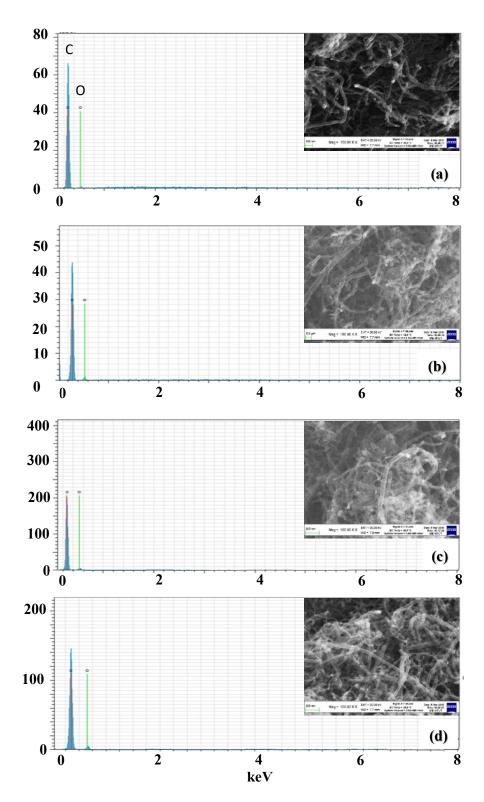



Figure S2. EDS spectra of (a) p-MWCNT, (b) 20-MWCNT, (c) 40-MWCNT and (d) 70-MWCNT.

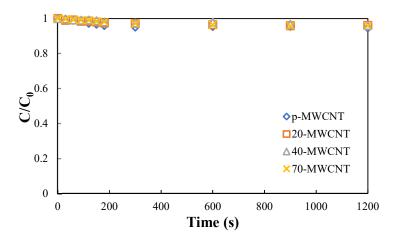



Figure S3. Adsorption of pCBA onto the 4 MWCNTs. Experimental condition:  $[pCBA]_0 = 0.5 \ \mu\text{M}, [B_4O_7^{2-}] = 5 \ \text{mM}, \text{MWCNT} \text{ dosage} = 20 \ \text{mg/L}, \text{pH} = 7.$ 

#### References

- 1. E. L. Yong and Y. P. Lin, Kinetics of natural organic matter as the initiator, promoter, and inhibitor, and their influences on the removal of ibuprofen in ozonation, *Ozone Sci. Eng*, 2013, **35**, 472-481.
- 2. E. L. Yong and Y. P. Lin, Incorporation of initiation, promotion and inhibition in the Rct concept and its application in determining the initiation and inhibition capacities of natural water in ozonation, *Water Res*, 2012, **46**, 1990-1998.
- J. Staehelin and J. Hoigné, Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions, *Environ. Sci. Technol*, 1985, 19, 1206-1213.
- M. Elovitz and U. von Gunten, Hydroxyl radical/ozone ratios during ozonation process I. The Rct Concept, *Ozone Sci. Eng*, 1999, 21, 239-260.
- G. V. Buxton, C. L. Greenstock, W. P. Helman and A. B. Ross, Critical review of rate constants for reactions of hydrated electrons, hydrogen-atoms and hydroxyl radicals in aqueous solution, *J. Phys. Chem. Ref. Data*, 1988, 17, 513-886.