Electronic Supplementary Information

Surface water treatment utilizing UV/H₂O₂ with subsequent soil aquifer treatment for drinking water purposes: Impact on Micropollutants, Dissolved Organic Matter and Biological Activity

Robin Wünsch,^{a,b} Julia Plattner,^c David Cayon,^a Fabienne Eugster,^{c,+} Jens Gebhardt,^d Richard Wülser,^c Urs von Gunten,^{b,e} and Thomas Wintgens *^a

^a FHNW University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Institute for Ecopreneurship, Hofackerstr. 30, 4132 Muttenz, Switzerland. ^b School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique

Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.

^c IWB (Industrielle Werke Basel), Margarethenstrasse 40, 4002 Basel, Switzerland.

^d Xylem Services GmbH, Boschstraße 4, 32051 Herford, Germany.

^e Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland.

⁺ Present address: Fabienne Eugster, F.Hoffmann-La Roche AG, Sicherheit, Gesundheits- und Umweltschutz, Grenzacherstrasse 124, 4070 Basel.

* Corresponding author: thomas.wintgens@fhnw.ch

Table S1. Device list of online sensors and probes.

Parameter	Locations	Device	Manufacturer
UVA	Rhine river sand filtrate, after AOP	ColorPlus	SIGRIST-Photometer, Switzerland
рН, Т	Rhine river sand filtrate, after AOP	CPS11D-7AS21*	Endress+Hauser, Switzerland
Turbidity	Rhine river sand filtrate	Monitor AMI Turbiwell 7027	SWAN Analytical Instruments, Switzerland
EC	Rhine river sand filtrate, after AOP		Endress+Hauser, Switzerland
H_2O_2	After AOP	AquaDMS	SIGRIST-Photometer, Switzerland
DO	Rhine river sand filtrate, after AOP	COS22D- AA1A2B22	Endress+Hauser, Switzerland
Redox	Rhine river sand filtrate, after AOP	CPS72D-7PT21**	Endress+Hauser, Switzerland
Flow	Rhine river sand filtrate, after AOP	3021 25D 72014BT41 C1	GEMÜ Gebr. Müller Apparatebau, Germany
Flow	Soil column effluents	MIK-5NA15AE34R	KOBOLD Messring, Germany

Table S2. Operational parameters of the soil columns in the test phase (November 2017 – August 2018).

Parameter	Unit	Reference column	Test column
Feed	-	Rhine river sand filtrate	AOP effluent
Flow			
Median	L/h	7.3	6.4
Standard deviation	L/h	2.6	3.2
Operating hours (flow > 0.6 L/h)			
Operating (share of 7253 h)	h	7121 (98%)	7019 (97%)
Stopped (share of 7253 h)	h	132 (2%)	234 (3%)
Number of shut downs	-	10	16
Mean duration of shut downs	h	13.2	14.6

Table S3. Operational parameters of the UV/H_2O_2 process during the test phase (November 2017 – August 2018).

Parameter	Unit	Median	Standard deviation
Flow	L/h	566	51
UV intensity	W/m ²	36.2	3.9
Residual H ₂ O ₂	mg/L	3.6	0.7

Table S4. Selected properties of the investigated micropollutants.

Substance	CAS No.	Туре	Molecular weight (Da)	<i>k</i> _{OH} / 10 ⁹ [M ⁻¹ s ⁻¹]	ε ₂₅₄ [M ⁻¹ cm ⁻¹]	Φ_{254} [mol/einstein]	logD [-] ^a	Measurement range (ng/L)	Measurement uncertainty (%)	Theoretical limit of quantification (ng/L)
Ethylendiamine Tetraacetate (EDTA)	60-00-4	Complexing agent	292.2	2.00 ^{b,1} 0.52 ^{c,1}	7890 ^{d,2}	0.56 ^{e,2}	-6.40 ^f	500 – 5000	20	40
Acesulfame (ACE)	33665-90-6	Artificial sweetener	201.2	3.80±0.27 ³	~31600 ^{g,4}	0.264	-2.77	10 – 1600	11	2.2
lopamidol (IPA)	62883-00-5	X-ray contrast media	777.1	3.42±0.28 ⁵	22700 ⁶	0.03318 ⁶	-2.31	10 – 500	27	5.0
lomeprol (IME)	78649-41-9	X-ray contrast media	777.1	2.03±0.13 ⁵	~24000 ^{g,7}	n.a.	-2.61	10 – 500	24	5.3
Metformin (MET)	657-24-9	Type 2 diabetes drug	129.2	1.4±0.16 ⁸	940±93 ⁹	0.014±0.0064 ⁹	-3.36	10 – 800	39	3.4
1H-Benzotriazole (BTZ)	95-14-7	Anti-corrosive agent	119.1	8.34±0.37 ¹⁰	5592 ¹⁰	0.012 ¹⁰	1.50	10 – 320	34	7.7
lopromide (IPR)	73334-07-3	X-ray contrast media	791.1	3.34±0.14 ⁵	21040±210 ¹¹	0.039±0.004 ¹¹	-2.12	10 – 500	12	5.0

^a Values for logD obtained at pH 7.4, predicted by ACD/Labs at chemspider.com. ^b For [Fe(EDTA)]². ^c For [Fe(EDTA)]⁻. ^d Average for all [Fe(EDTA)] species at pH 6. ^e pH 6, with 0.1 mM H₂O₂. ^f For EDTA only. ^g Value visually obtained from a plot.

Table S5. Overview on performance parameters of the applied analytical methods.

Analytical Method	Limit of quantification	Standard deviation	Measuring range
Dissolved organic carbon by LC-OCD	0.1 mg C/L	10%	0.1 – 5.0 mg C/L
H ₂ O ₂ by titanium oxalate (photometric)	0.3 mg H ₂ O ₂ /L	5%	0.3 – 10 mg H ₂ O ₂ /L
Intact cell counts by flow cytometry	200 cells/mL	10%	10 ³ – 10 ⁶ cells/mL
ATP by luminescence	0.0004 nmol/L	30%	0.001 – 0.1 nmol/L

Figure S1. Concentrations of micropollutants along the treatment trains. n = 7 for all. Central mark of boxes: median; lower and upper edges of boxes: 25^{th} and 75^{th} percentiles, respectively; whiskers: minimum and maximum values. Dotted line: lowest point of calibration. Dot-stroked line: theoretical limit of quantification.

Figure S2. Concentrations of EDTA in the raw Rhine river water between 2003 and 2018. Values below the lowest point of calibration (i.e., $0.5 \mu g/L$) are reported as $0.5 \mu g/L$. *n* indicated in brackets for the respective year. Central mark of boxes: median; left and right edges of boxes: 25^{th} and 75^{th} percentiles, respectively; whiskers: minimum and maximum values. Outliers, i.e., values outside ± 2.7 standard deviations from median (99.3% coverage of normally distributed data), marked as a red cross. Dotted line: lowest point of calibration. Data from monitoring measurements by iwb.

Figure S3. DOC concentrations along the soil columns, receiving Rhine river sand filtrate (black) and UV/H_2O_2 treated water (blue). n = 8 for all. Central mark of boxes: median; left and right edges of boxes: 25^{th} and 75^{th} percentiles, respectively; whiskers: minimum and maximum values. Outliers, i.e., values outside ±2.7 standard deviations from median (99.3% coverage of normally distributed data), marked as a red cross. No statistically significant differences were detected between the groups at the influents (0 cm) and effluents (100 cm) of the columns.

Treatment	DOC [mg/L]	Chrom. DOC [mg/L]	Biopolymers [mg/L]	Humic Substances [mg/L]	HS Peak Maximum [min]	Building Blocks [mg/L]	LMW A+N [mg/L]
Filtrate	1.3±0.4	1.2±0.4	0.1±0.0	0.8±0.1	43.9±0.5	0.2±0.0	0.1±0.1
AOP	1.3±0.4	1.2±0.4	0.1±0.0	0.9±0.1	44.5±0.5	0.2±0.1	0.2±0.1
Soil	1.1±0.2	1.1±0.2	0.0±0.0	0.7±0.1	43.8±0.5	0.2±0.0	0.1±0.0
AOP + Soil	1.1±0.2	1.1±0.2	0.0±0.0	0.8±0.1	44.2±0.5	0.2±0.0	0.1±0.0

Chrom. DOC: chromatographic DOC. HS: Humic Substances. LMW A+N: low molecular weight acids and neutrals. Differences between results from chromatographic DOC and the distinct fractions are caused by rounding inaccuracies.

Table S7. p values of paired t-tests of the day-wise evaluation by categories of the dissolved organic matter (n = 8, November 2017 – August 2018).

DOC	Filtrate	AOP	Soil	AOP + Soil
Filtrate	-	0.6851	0.0195	0.0302
AOP	0.6851	-	0.0236	0.0344
Soil	0.0195	0.0236	-	0.6636
AOP + Soil	0.0302	0.0344	0.6636	-
Chrom. DOC				
Filtrate	-	0.4036	0.0240	0.0597
AOP	0.4036	-	0.0237	0.0508
Soil	0.0240	0.0237	-	0.8611
AOP + Soil	0.0597	0.0508	0.8611	-
Biopolymers				
Filtrate	-	0.1991	0.0014	0.0024
AOP	0.1991	-	0.0001	0.0002
Soil	0.0014	0.0001	-	0.1803
AOP + Soil	0.0024	0.0002	0.1803	-
Humic Substances				
Filtrate	-	0.3847	0.0002	0.0068
AOP	0.3847	-	0.0215	0.0129
Soil	0.0002	0.0215	-	0.3135
AOP + Soil	0.0068	0.0129	0.3135	-
HS peak maximum				
Filtrate	-	0.3516	0.0013	0.0454
AOP	0.3516	-	0.0015	0.0303
Soil	0.0013	0.0015	-	0.1575
AOP + Soil	0.0454	0.0303	0.1575	-
Building Blocks				
Filtrate	-	0.4234	0.0108	0.0272
AOP	0.4234	-	0.3653	0.3710
Soil	0.0108	0 3653	_	0.7110
	0.0100	0.0000		

T-LL 07	(+ !	 and the state of t	la a al avera da a	and a first and the second second second	a substant a set fille a	all a sub to all a se	
I anie S/ I	CONTINUED	naired t-tests of t		evaluation nv cat	addries of the	niccolvan or	nanic matter
	continucu.						admo mallor.

LMW A+N				
Filtrate	-	0.2454	0.1910	0.2381
AOP	0.2454	-	0.0654	0.0851
Soil	0.1910	0.0654	-	0.7799
AOP + Soil	0.2381	0.0851	0.7799	-

Figure S4. Bacterial ATP per intact cell in the water phase along the soil columns, receiving Rhine river sand filtrate (black) and UV/H_2O_2 treated water (blue). *n* = 5 for all, except *n* = 4 for Rhine river sand filtrate after 5 cm travelled distance. Central mark of boxes: median; left and right edges of boxes: 25th and 75th percentiles, respectively; whiskers: minimum and maximum values. Outliers, i.e., values outside ±2.7 standard deviations from median (99.3% coverage of normally distributed data), marked as a red cross. Significant differences between groups in paired two-sided t-tests are marked with " \boxtimes " and " $\boxtimes \boxtimes \boxtimes$ " for p < 0.05 and p < 0.001, respectively.

References

- 1 J. Lati and D. Meyerstein, J. Chem. Soc. Dalt. Trans., 1978, **0**, 1105–1118.
- 2 M. Sörensen and F. H. Frimmel, *Zeitschrift für Naturforsch. B*, 1995, **50**, 1845–1853.
- 3 J. E. Toth, K. A. Rickman, A. R. Venter, J. J. Kiddle and S. P. Mezyk, *J. Phys. Chem. A*, 2012, **116**, 9819–9824.
- 4 M. Scheurer, B. Schmutz, O. Happel, H. J. Brauch, R. Wülser and F. R. Storck, *Sci. Total Environ.*, 2014, **481**, 425–432.
- 5 J. Jeong, J. Jung, W. J. Cooper and W. Song, *Water Res.*, 2010, 44, 4391–4398.
- 6 F. X. Tian, B. Xu, Y. L. Lin, C. Y. Hu, T. Y. Zhang and N. Y. Gao, Water Res., 2014, 58, 198– 208.
- 7 T. E. Doll, *Photochemischer und photokatalytischer Abbau von Carbamazepin, Clofibrinsäure, Iomeprol und Iopromid*, Frimmel, Fritz H., Karlsruhe (Germany), 2004, vol. 42.
- 8 B. A. Wols, R. C. H. M. Hofman-Caris, D. J. H. Harmsen and E. F. Beerendonk, *Water Res.*, 2013, **47**, 5876–5888.
- 9 B. A. Wols, D. J. H. Harmsen, E. F. Beerendonk and R. C. H. M. Hofman-Caris, *Chem. Eng. J.*, 2014, **255**, 334–343.

- 10 S. Bahnmüller, C. H. Loi, K. L. Linge, U. von Gunten and S. Canonica, *Water Res.*, 2015, **74**, 143–154.
- 11 S. Canonica, L. Meunier and U. von Gunten, *Water Res.*, 2008, **42**, 121–128.