1 2	Economic, energy and carbon footprint assessment of integrated forward osmosis membrane bioreactor (FOMBR) process in urban wastewater
2	treatment
4	
5	For submission to
6	Environmental Sciences Weter Descende & Technologie
/	Environmental Science: water Research & Technology
0	
9 10	Supplementary information
11	Supplementary information
12	
13	Nur Hafizah Ab Hamid ¹ , Simon Smart ¹ , David K. Wang ² , Kaniel Koh Wei Jun ^{1,3} , Kalvin Ng
14	Jiak Chern ^{1,3} . Liu Ye ^{1*}
15	
16	¹ School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, QLD
17	4072, Australia;
18	² School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW
19	2006 Australia;
20	³ Ngee Ann Polytechnic, 599489, Singapore;
21	
22	*Corresponding author: phone + 61 7 3365 4152; fax +61 7 3365 4199; email:
23	<u>l.ye@uq.edu.au</u>
24	
25	

26 Summary: There are seven pages in the supporting information section (4 tables and 1 graph)

27 Appendix A: Mass balance, CAPEX and OPEX parameters and assumptions

Table A1. Characteristics of the influent wastewater				
Parameters of the wastewater influent	Symbol	Values	Unit	
Influent flow rate	Q_{Inf}	15 000	m ³ day ⁻¹	
Biosolids concentration in influent	$X_{S,Inf}$	100	mg-COD L ⁻¹	
COD concentration in influent	$S_{COD,Inf}$	400	mg-COD L ⁻¹	
NH ₄ ⁺ concentration in influent	$S_{NH,Inf}$	50	mg-N L ⁻¹	
NO ₃ ⁻ concentration in influent	S _{NO,Inf}	0	mg-N L ⁻¹	

²⁸ Table A1. Characteristics of the influent wastewater

30 Other assumptions implemented for the mass balance calculations:

- 31 i. All of the units were operated with the steady-flow, therefore, there was no32 accumulation within the system.
- 33 ii. The density of the wastewater was assumed to be constant at 1000 kg m⁻³ (The
 34 contaminants in the influent were too small to be compared with the volume of
 35 wastewater to cause a significant change in the density).
- 36 iii. Constant influent characteristics, component conversion in the bioreactor, digester and
 37 AMOX reactor. Constant solid destruction in digester over variation of sludge age,
 38 stoichiometric ratio, kinetics and temperature of the process (Table A2, supplementary
- 39 information).
- 40 iv. The fouling formation, propensity and characteristics were assumed to be constant,
- 41 hence, the chemical cleaning frequency was expected to be consistent. However, it was
- 42 expected the fouling on FO membrane was relatively loose and low in propensity, and
- 43 therefore, FO required fewer cleaning regimes compared to MF and RO membranes.
- 44 Intense chemical cleaning, using 3500 ppm sodium hypochlorite (NaOCl) and 2500
- 45 ppm citric acid, was conducted 4 times per year for MF and RO, but only twice per year
- 46 for the FO.
- 47 v. The flow of the recycle stream from the sludge handling units to the bioreactors were48 assumed to be insignificant to affect the characteristics of the influent wastewater.

²⁹

Scenario	Unit	Operation Conditions/ Assumptions
	Primary Treatment	Primary Settler All COD solids is removed and transported to digestion (sludge treatment) at 1%
All scenarios	Sludge treatment	ThickenerBiosolids dewatered to a concentration of 5%Anaerobic digesterRetention time in digester: 16 daysConversion to electricity: 40%Temperature of vessel: 40%Safety margin 1%Belt pressBiosolids dewatered to a concentration of 15%
A and B	MFAeMBR and FOAeMBR	MBRCOD conversion: 0.99 NH_4^+ conversion: 0.99 NO_3^- conversion $0.7 - 0.99$ Biomass retention time: 30 daysAutotrophs decay rate: 0.1 per dayHeterotrophs decay rate: 0.2 per dayAutotrophs yield rate: 0.24 g cell COD formed/ g NH_4^+ -N oxidizedHeterotrophs yield rate: 0.67 g cell COD formed/ gCOD removed (oxidized+assimilated)
All scenarios with MF application	MFAeMBR and MFAnMBR	MF unit Water flux recovery: 95% Rejection performance: COD = 50% Intense chemical cleaning: 4 times per year Concentration of chemicals used for cleaning: 3500 ppm NaOCl, 2500 ppm citric acid
Scenario B: MFAeMBR-RO	RO	RO unit Water flux recovery: 75% Rejection performance: COD = 100%, NH ₄ = 98%; NO_3 = 95% Intense chemical cleaning: 4 times per year Concentration of chemicals used for cleaning: 3500 ppm NaOCl, 2500 ppm citric acid
All scenarios with FO application	FOAeMBR and FOAnMBR	FO unit Water flux recovery: 80% Rejection performance: $COD = 99\%$, $NH_4^+ = 93\%$; $NO_3^- = 85\%$ (experimental results) Intense chemical cleaning: 2 times per year Concentration of chemicals used for cleaning: 3500 ppm NaOCl, 2500 ppm citric acid
Scenario B: FOAeMBR-RO	RO	RO unit Water flux recovery: 50% Rejection performance: $COD = 100\%$, $NH_4^+ = 98\%$; $NO_3^- = 95\%$

50 Table A2. Parameters of the mass balance calculations

		Intense chemical cleaning: 4 times per year
		Concentration of chemicals used for cleaning: 3500
		ppm NaOCl, 2500 ppm citric acid
		AnMBR
		<i>Remarks</i> : Due to the complexity of the anaerobic
		reactions; it has been simplified to acidogenesis and
		methanogenesis. The COD in the wastewater is
		assumed to be fully degradable.
		Conversion by acidogenesis: 1
		Conversion by methanogenesis: 0.99
		Biomass retention time: 40 days
		Acidogenesis decay rate: 0.02 per day
		Methanogenesis decay rate: 0.036 per day
		Acidogenesis yield rate: 0.07 g COD formed/ g COD
а · а		removed
Scenario C	and FOAnMBR	Methanogenesis 0.076 g COD formed/ g COD removed
		PN/Anammox
		Conversion by autotrophs: 0.57
		Conversion by anammox (MF): 0.26
		Conversion by anammox (FO): 0.40
		Biomass retention time: Indefinite
		Autotrophs decay rate: 0.2 per day
		Anammox decay rate: 0.00384 per day
		Autotrophs yield rate: 0.24 g COD formed/ g COD
		removed
		Anammox 0.164 g COD formed/ g COD removed

- 52 Other assumptions implemented for CAPEX and OPEX calculations:
- 53 i. Other values or costs provided in \$USD by the suppliers were converted by assuming
- 54 constant exchange rate of USD 1.00 = AUD 1.33.
- 55ii. The detailed calculation of the pump installation (except for the membrane units; MF, FO
- and RO) in the wastewater treatment plants were not considered, therefore, a higher
- 57 contingency value (50%) was applied to cover for the pump installation and operation.
- 58ii. The cost of the gas purging in the anaerobic membrane bioreactor (AnMBR) was not
- 59 significant to be compared to the other OPEX (e.g. aeration and mixing) hence, purging
- 60 cost was not included in the calculations.

- 61v. The energy consumed for the anaerobic digester unit included the energy required for
- 62 stirring and pre-heating of the influent.
- 63v. Membrane cost was assumed to be constant throughout the operation. The installation and
- 64 membrane replacement costs are as shown in Table 3 in the main manuscript.
- 65vi. The earnings of the wastewater treatment plant depending on the quality of the effluent or
- 66 product water produced (Table A3, supplementary information).
- 67

68	Table A3. S	Specific	earnings	of waste	ewater	treatment
----	-------------	----------	----------	----------	--------	-----------

	Earnings	Values	Unit
Biological	Carbon-based compounds removal	5	\$/ kg-chemical oxygen demand (COD)
treatment	Nitrogen-based compounds removal	15	\$/kg-N
Electricity produced from methane		0.12	\$/kWh
	Water sale	1.70	\$/m ³

70 Appendix B: Sensitivity analysis – carbon footprint

Fig. B1: Sensitivity analysis of carbon footprint for direct emission due to the variation of
GHG emit/mass influent ratio (a) CH₄ emission factor in scenarios A, B and C; (b) N₂O
emission factor in scenarios A, B and C

75

76 Based on 2006 IPCC Guidelines for National Greenhouse Gas Inventories¹, the CH₄ emission

- 77 factor $(B_0 \times MCF)$ may vary from 5 10% and 5 20% of COD influent for aerobic-anoxic
- 78 and anaerobic+PN/AMOX operations respectively under a sub-optimal operation. As for N₂O
- 79 emissions, a review done by Law (2012) shows that the aerobic-anoxic may vary from from
- 80 0.035 2.59 % of N-influent for aerobic-anoxic process and 0.4 6.6 % of N-influent for
- 81 anaerobic+PN/AMOX process.²
- 82
- 83

84 Appendix C: Reverse salt diffusion baseline calculation

86				
	Parameters	Equation/ Justification	Value	Unit
	Volume of MBR (V _{MBR})	Mass biosolid in bioreactor	896	m ³
		Biosolid concentration		
	Maximum salt concentration in MBR	Assumption	3	kg NaCl m ⁻
	(C _{salt-max})			3
	Reverse salt flux (RSD _{flux})	Assumption	0.01	kg m ⁻
				² .hour ⁻¹
	Area of MF required (A _{MF})	-	2776	m ²
	Rate of salt diffuse (RSD _{rate})	$\mathrm{RSD}_{\mathrm{flux}} imes \mathrm{A}_{\mathrm{MF}}$	416	kg hour-1
	MF water flux (MF _{flux})	Assume the MF is operated at 2 bar	0.05	m ³ m ⁻²
				hour-1

85 Table C1. Methodologies of reverse salt diffusion in FOMBR operation

87

The CAPEX and OPEX of MF in controlling salinity in FOMBR were referred to Choi's work
(2015)³. The CAPEX of MF installation was \$119 944 meanwhile the CAPEX for the FO
operation was \$31 504 year⁻¹. These values were equivalent to 5 % and 7 % of FO CAPEX
cost and FO OPEX in scenario A respectively.

92

References:

95	1	M. R. J. Doorn, S. Towprayoon, S. M. Manso Vieira, W. Irving, C. Palmer, R. Pipatti
96		and C. Wang, Wastewater Treatment and Discharge, 2006 IPCC Guidel. Natl. Greenh.
97		<i>Gas Invent.</i> , 2006, 1–28.
98	2	Y. Law, L. Ye, Y. Pan and Z. Yuan, Nitrous oxide emissions from wastewater
99		treatment processes, Philos. Trans. R. Soc. B Biol. Sci., 2012, 367, 1265–1277.
100	3	Y. Choi, H. Cho, Y. Shin, Y. Jang and S. Lee, Economic evaluation of a hybrid
101		desalination system combining forward and reverse osmosis, Membranes (Basel).,
102		2015, 6 , 1–19.
103		