Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Enhanced removal of antibiotics in hospital wastewater by Fe-ZnO

activated persulfate-based oxidation

Gnougon Nina COULIBALY^{1,2}, Sungjun BAE², Joohyun KIM², Aymen Amin ASSADI¹,

Khalil HANNA^{1*}

¹Univ. Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226,

F-35000 Rennes, France

²Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro,

Gwangjin-gu, Seoul 05029, Republic of Korea

*Corresponding author: khalil.hanna@ensc-rennes.fr

Tables and figures

Table S1. EDX analysis results for different samples	3
Table S2. Inorganic species and physico-chemical characteristics of SWW and RHW	4

Fig. S1. Schematic diagram of recirculation glass reactor system
Fig. S2. EDX analysis of (a) ZnO and (b) Fe-ZnO particles
Fig. S3. FLU removal kinetics in presence of oxidants
Fig. S4. Removal kinetics of FLU with 0.7 wt% Fe-ZnO/CA membrane catalyst at different
concentration
Fig. S5. Removal of (a): FLU and (b): CIP in single system in different water matrices9
Fig. S6. Effect of water matrices in (a): FLU and (b): CIP degradation in binary system10
Fig. S7. Adsorption of inorganic ligands and LHA on TiO_2 and 0.7 wt % Fe-ZnO/CA
membrane surface in dark, without FLU and PS11

Chemical elements	Nanowire ZnO	Nanoparticles
	(wt %)	Fe-doped ZnO
Zn	80	79.04
Ο	20	18.05
Fe	0	2.91

Table S1. EDX analysis results for different samples

	SWW	RHW	
pH	8.0±0.5	6.8±0.2	
Turbidity (NTU)	2±1	196±5	
Conductivity (μ S cm ⁻¹)	1250±5	1340±5	
TOC (mg L^{-1})	80±5	50±10	
Suspended solid (mg L ⁻¹)	0	20±2	
Chloride (mg L ⁻¹)	450±20	620±10	
Nitrate mg L ⁻¹)	35±2	7±2	
Sulfate (mg L ⁻¹)	20±2	60±10	
Phosphate (mg L ⁻¹)	150±10	60±10	

Table S2. Inorganic species and physico-chemical characteristics of SWW and RHW

Synthetic wastewater (SWW) were prepared by adding 400 mg L⁻¹ of NaCl, 50 mg L⁻¹ of citric acid, 30 mg L⁻¹ of ascorbic acid, 100 mg L⁻¹ of sucrose and 230 mg L⁻¹ Na₂HPO₄ to tap water (conductivity 408 μ S cm⁻¹).

Fig. S1. Schematic diagram of recirculation glass reactor system

Fig. S2. EDX analysis of (a) ZnO and (b) Fe-ZnO particles. Abbreviations: energy dispersive X-ray (EDX)

Fig. S3. FLU removal kinetics in presence of oxidants. Experimental conditions: [FLU] $_0 = 5$ μ M, [PS] $_0 = 0.5$ mM, [H₂O₂] $_0 = 0.2$ mM, UV-A reaction time = 24 h. pH $_0 = 7.0 \pm 0.2$, V = 1 L, recirculation flow rate = 222 mL min⁻¹. The correlation coefficients for kinetic models were more than 0.98). Abbreviations: FLU = flumequine, PS = Persulfate, H₂O₂ = hydrogen peroxide.

Fig. S4. Removal kinetics of FLU with 0.7 wt% Fe-ZnO/CA membrane catalyst at different concentration. Experimental conditions: [FLU] $_0 = 5 \mu$ M, UV-A reaction time = 24 h UV-A reaction time = 24 h. pH $_0 = 7.0 \pm 0.2$, recirculation flow rate = 222 mL min⁻¹. The correlation coefficients for kinetic models were more than 0.99.

Fig. S5. Removal of (a): FLU and (b): CIP in single system in different water matrices. Experimental conditions: [FLU] $_0$ = [CIP] $_0$ =5 μ M, [PS] $_0$ = 0.5 mM, [0.7 wt % Fe-ZnO] = 7.77 g m⁻² CA membrane, UV-A reaction time = 24 h , pH $_0$ =7.0 ± 0.2, V = 1 L, recirculation flow rate = 222 mL min⁻¹. The correlation coefficients for kinetic models were more than 0.99. Abbreviations: FLU = flumequine, CIP = ciprofloxacin, PS = Persulfate: UPW = Ultrapure water, SWW = Synthetic wastewater, RHW = Real hospital wastewater.

Fig. S6. Effect of water matrices in (a): FLU and (b): CIP degradation in binary system. Experimental conditions: $[FLU] = [CIP]_0 = 5 \ \mu\text{M}$, $[PS]_0 = 0.5 \ \text{mM}$, $[0.7 \ \text{wt \% Fe-ZnO}] = 7.77 \ \text{g} \ \text{m}^{-2} \ \text{CA}$ membrane, UV-A reaction time = 24 h, pH₀=7.0 ± 0.2, V = 1 L, recirculation flow rate = 222 mL min⁻¹. The correlation coefficients for kinetic models were more than 0.95. Abbreviations: FLU = flumequine, CIP = ciprofloxacin, PS = persulfate, UPW = Ultrapure water, SWW = Synthetic wastewater, RHW = Real hospital wastewater.

Fig. S7. Adsorption of inorganic ligands and LHA on TiO₂ and 0.7 wt % Fe-ZnO/CA membrane surface in dark, without FLU and PS. Experimental conditions: catalyst mass = 0.025 g, [Phosphate] $_0 = 150$ mg L⁻¹, [Nitrate] $_0 = 10$ mg L⁻¹, [Sulfate] $_0 = 120$ mg L⁻¹, [Chloride] $_0 = 250$ mg L⁻¹ and [LHA] $_0 = 40$ mgC L⁻¹, reaction time = 12 h, pH $_0 = 7.0 \pm 0.2$, V = 1 L, recirculation flow rate = 222 mL min⁻¹. Abbreviation: FLU = flumequine, PS = Persulfate, LHA = Leonardite Humic Acid.