Supplementary information for

Towards the development of a standardized method for extraction and analysis of PFAS in biological tissues

Adam D. Point,^a Thomas M. Holsen,^{*b} Sujan Fernando,^c Philip K. Hopke,^{*d} and Bernard S. Crimmins^{b,e}

S1. Interlaboratory Studies. van Leeuwen et al.¹ organized a 38 participant worldwide per- and polyfluoroalkyl substances (PFAS) interlaboratory study (ILS) targeting 13 analytes in a study standard mixture and multiple environmental and human matrices distributed to all participants. All environmental matrices except water were spiked with most of the target analytes, enabling assignment of known ("assigned") concentrations. Fractions of submitted data exceeding the study's acceptability threshold (z-score <|2|) for each distributed matrix decreased as follows: standard solution (76%) > human blood (67%) > human plasma (63%) > fish liver extract (55%) > surface water (31%) > fish tissue (17%).¹

A follow-up ILS distributed surface water, fish fillet tissue, a shared standard solution to evaluate variabilities with participants' (21) in-house standards, and three separate solutions containing a total of nine isotopically-labeled (¹³C or ²H) PFAS.² The precision of the submitted data improved relative to the 2006 results. However, precision data for individual laboratories (mean %RSD for all analytes for a single lab; 12% for water and 6.8% for fish) were considerably better than the cumulative precision.² Additionally, mean reported values for some analytes fell below the spiked concentrations and the majority of minimum reported concentrations were approximately 50% of the spiked concentration, with a value of 34% for perfluorooctane sulfonate (PFOS).² Inefficient extraction was the likely cause of these low values, since losses during sample preparation should have been accounted for via surrogate addition.

Lindström et al.³ coordinated an additional 15-participant ILS published in 2009 involving a shared study standard and two NIST human blood serum standard reference materials (SRMs; 1589a and 1957). A shared mass-labeled standard containing ¹³C-labeled PFOS, perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA) was also distributed, and was used by some participants. SRM 1589a contains lower PFAS concentrations than 1957, and had fewer detects and higher uncertainties. Although improvements were realized relative to van Leeuwen et al.,¹ precision remained poor.³ However, the SRM 1957 data exhibited greater precision than the study standard data, which highlights matrix cleanliness is not necessarily a predictor of method performance. Besides SRM 1957 data having higher precision than that of the study standard, an additional peculiar irregularity emerges when results from Lindström et al.³ are compared to those of van Leeuwen et al..² Since these two studies examined different matrices, the data are not directly comparable. However, both exercises distributed a study reference standard that included three common mass-labeled compounds from the same manufacturer. Interestingly, participants performed better at accurately determining target analytes in the study reference standard in the van Leeuwen et al.² study despite avoiding the use of mass-labeled standards in their determinations. Participants in Lindström et al.³ were allowed the liberty to choose their methods, which likely included mass-labeled standards, although the report is not explicit.

A subsequent six-participant ILS provided the first assigned perfluorinated alkyl acid (PFAA) SRM values for the two human blood serum (NIST SRMs 1957 and 1958) and two human milk SRMs (NIST SRMs 1953 and 1954).⁴ SRMs 1954 and 1958

eAEACS, LLC, New Kensington, PA

^{*}Corresponding authors: Email: phopke@clarkson.edu; tholsen@clarkson.edu

^a Institute for a Sustainable Environment, Clarkson University, Potsdam, NY

^b Civil and Environmental Engineering, Clarkson University, Potsdam, NY

^c Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY

^dDepartment of Public Health Sciences, University of Rochester Medical Center, Rochester, NY

were spiked with a suite of 172 organohalogen contaminants (no PFAAs) resulting in four SRMs from two initial samples, two spiked (SRMs 1954 and 1958), and two unspiked (SRMs 1953 and 1957). While multiple extraction and cleanup methods were employed by participating analysts, all participants utilized multiple mass-labelled standards spiked prior to extraction in order to quantify the target analytes.⁴ In comparison with van Leeuwen et al.,¹ significant precision improvements were apparent for the human serum matrix (SRM 1957). Resultant ILS reference values were in good agreement with previously established consensus values.³

Seven laboratories participated in an ILS organized by Reiner et al.⁵ lead to establishment of reference values for PFOS and information values for several other PFAAs for three NIST SRMs including 1946 and 1947 (Great Lakes fish tissue) and 1577c (bovine liver). NIST SRM 2974a (mussel tissue) was also distributed, but only PFOS data were reported by two of the three participating laboratories, and these values differed by 40%. Overall, there was good agreement among participants' submitted PFOS data (%RSDs of 3.65% and 6.61% for SRMs 1946 and 1947, respectively) with lower precision for the other analytes (%RSDs >15%). Reiner et al.⁶ sought to establish PFAS reference values for less frequently analyzed abiotic matrices by organizing an eight-participant ILS. Poor agreement among the submitted data (analyte-specific %RSDs 10-165%) contrasted with the generally increasing trend in precision over time demonstrated by previously summarized ILSs. Internal standard calibration was universally applied among participants. However, there were inconsistencies in the internal standards used when a corresponding mass-labeled counterpart (i.e. perfluorobutane sulfonate (PFBS) in SRM 2585; house dust) was not commercially available. Furthermore, the use of one sample preparation procedure for all of the matrices was cited as an additional possible contributor to discrepancies in the submitted data.

Reiner et al.⁶ sought to establish PFAS reference values for less frequently analyzed abiotic matrices by organizing an eight-participant ILS. Poor agreement among the submitted data (analyte-specific %RSDs 10-165%) contrasted with the generally increasing trend in precision over time demonstrated by previously summarized ILSs. Internal standard calibration was universally applied among participants. However, there were inconsistencies in the internal standards used when a corresponding mass-labeled counterpart (i.e. perfluorobutane sulfonate (PFBS) in SRM 2585; house dust) was not commercially available. Furthermore, the use of one sample preparation procedure for all of the matrices was cited as an additional possible contributor to discrepancies in the submitted data.

While precision generally improved over time, it is important to note that the ILSs that displayed increased precision also generally included fewer participants compared to studies reporting low precision. For instance, data for PFAS in fish muscle tissue was submitted by 27 and 15 participants in the 2006¹ and 2009² ILSs documented by van Leeuwen et al., respectively, with corresponding %RSD ranges of 65-236% and 22-47%. This contrasts with the relative errors of 3.7% and 6.6% among seven participants for the PFOS reference values in Great Lakes fish tissue SRMs 1946 and 1947, respectively, reported in 2012 by Reiner et al.⁵ Additionally, the number of replicate analyses performed by individual participants was generally low (n=3-6), with a range of 2-26 for any single analytical method (some participants applied multiple methods).^{4,5} Since specific guidelines regarding analyzing replicates in multiple batches and/or on multiple days are not supplied in the text of the cited ILSs, participants may have combined replicate analyses into few or even a single batch, which would also contribute to increased precision.

The reviewed ILSs highlight the potential for substantial variability during PFAS quantification, regardless of analyzed matrix. Application of well-defined native standards (purity and isomer composition), appropriate mass-labeled surrogate standards (ideally using isotope dilution), and use of cleanup procedures which adequately remove interferences from environmental sample matrices were commonly identified in these ILSs as keys to producing high quality, reproducible data.

Additionally, use of external calibration methods for PFAS quantitation was illadvised.¹ With the exception of native standard quality, the causes of inconsistency identified by the reviewed ILSs can be generally simplified as differential exchange of analytes between two steps in the analytical method. The availability of isotopically-labeled surrogates for most commonly analyzed PFAS enables the use of isotope dilution methods, which counteracts most of these complications. However, the following section highlights known instances of low and/or variable surrogate recoveries that likely contributed to poor precision of past PFAS analytical methods that necessarily applied a relatively narrow array of surrogates to a broad range of target analytes. Additionally, low and/or variable surrogate recoveries have potential to jeopardize QA/QC requirements in modern methods if unaddressed.

Reference	Matrix	Spiked ^a	Participants	Precision ^b
				25-256 %RSD (PFHxS, PFNA)
	Standard mixture	N/A	38; 13 countries	80-202% [analyte means;
				(in-house)/(shared)]
van Leeuwen et	Human plasma	Х	17 submissions	32-64 %RSD (PFOS, PFHxS)
al. (2006)1	Human whole blood	Х		29-90 %RSD (PFHxS, PFOSA)
	Fish muscle	✓		65-236 %RSD (PFBS, PFNA)
	Fish liver extract	✓	27 submissions	37-202 %RSD (PFHxS, PFHpA)
	Surface water	Х		47-250 %RSD (PFBS, PFHxS)
	Standard mixture	N/A	21	95-105% [analyte means;
van Leeuwen et	Standard Mixture	N/A	21	(in-house)/(shared)]
al. (2009) ²	Fish muscle	✓	15 submissions	22-47 %RSD (PFDA, PFOSA)**
	Surface water	✓	17 submissions	16-69 %RSD (PFBA, PFOSA)**
Lindström et al. (2009) ³	Standard mixture	N/A		44-101 %RSD (PFNA, PFDS)
	Human serum (SRM 1957)	Х	15	5-133 %RSD (PFDS, PFDoA)
	Human serum (SRM 1589a)	Х		14-139 %RSD (PFOS, PFDoA)
Keller et al.	Human serum (SRM 1957)	Х	6	7-26 %RSD (PFOS, PFDA)
(2010)4	Human milk (SRM 1954)	Х	3	19 %***(PFOS)
	Fish tissue (SRM 1946)	Х	7	3.65% ***(PFOS only)
Reiner et al.	Fish tissue (SRM 1947)	Х	7	6.61%*** (PFOS only)
(2012) ⁵	Bovine liver (SRM 1577c)	Х	3	23.8%*** (PFOS only)
	Mussel tissue (SRM 2974a)	Х	2 submissions	40% difference (PFOS only)
	Sediment (SRM 1941b)	х	6	>60 %RSD (PFOS)
Deiner et al	Sediment (SRM 1944)	Х	7	>60 %RSD (PFOS)
Reiner et al.	House dust (SRM 2585)	Х	3	<10-81 %RSD (PFOS, PFBS)
(2015) ⁶	Soil (SRM 2586)	Х	6	32 %RSD (PFOS)
	Sludge (SRM 2781)	Х	5	10-165 %RSD (~30% for PFOS)

Table S1. Comparison of PFAS interlaboratory studies

^adescribes whether target analytes were added to the matrix prior to distribution to participants (\checkmark = yes, X = no) ^bvalues represent pooled, unreduced data (n occasionally <3) unless otherwise specified. Analyte abbreviations in parentheses correspond to min, max values from cited reference, respectively

**based on solvent-based calibration curve quantification data (standard addition also performed)

*** calculated as (expanded uncertainty)/(reference or consensus value)*100

Compound	Full name	Formula	Surrogate		
	Native PFCAs				
PFBA	Perfluorobutanoic acid	$CF_3(CF_2)_2 COOH$	PFBA ¹³ C		
PFPeA	Perfluoropentanoic acid	CF ₃ (CF ₂) ₃ COOH	PFHxA ¹³ C		
PFHxA	Perfluorohexanoic acid	$CF_3(CF_2)_4 COOH$	PFHxA ¹³ C		
PFHpA	Perfluoroheptanoic acid	CF ₃ (CF ₂) ₅ COOH	PFOA ¹³ C		
PFOA	Perfluorooctanoic acid	CF ₃ (CF ₂) ₆ COOH	PFOA ¹³ C		
PFNA	Perfluorononanoic acid	CF ₃ (CF ₂) ₇ COOH	PFNA ¹³ C		
PFDA	Perfluorodecanoic acid	CF ₃ (CF ₂) ₈ COOH	PFDA ¹³ C		
PFUnA	Perfluoroundecanoic acid	CF ₃ (CF ₂) ₉ COOH	PFUnA ¹³ C		
PFDoA	Perfluorododecanoic acid	CF ₃ (CF ₂) ₁₀ COOH	PFDoA ¹³ C		
PFTrA	Perfluorotridecanoic acid	CF ₃ (CF ₂) ₁₁ COOH	PFDoA ¹³ C		
PFTeA	Perfluorotetradecanoic acid	CF ₃ (CF ₂) ₁₂ COOH	M2PFTeA		
PFHxDA	Perfluorohexadecanoic acid	CF ₃ (CF ₂) ₁₄ COOH	M2PFHxDA		
	Native PFSAs				
PFBS	Potassium perfluoro-1-butanesulfonate	CF ₃ (CF ₂) ₃ SO ₃ ⁻	PFHxS ¹⁸ O		
PFHxS	Sodium perfluoro-1-hexanesulfonate	CF ₃ (CF ₂) ₅ SO ₃ -	PFHxS ¹⁸ O		
PFOS	Sodium perfluoro-1-octanesulfonate	$CF_3(CF_2)_7SO_3^-$	PFOS ¹³ C		
PFDS	Sodium perfluoro-1-decanesulfonate	CF ₃ (CF ₂) ₉ SO ₃ ⁻	PFOS ¹³ C		
	Mass-labeled PFC	CAs			
PFBA ¹³ C	Perfluoro[1,2,3,4-13C4]butanoic acid				
PFHxA ¹³ C	Perfluoro[1,2- ¹³ C ₂]hexanoic acid				
M5PFHxA*	Perfluoro[1,2,3,4,6- ¹³ C ₅]hexanoic acid				
PFOA ¹³ C	Perfluoro[1,2,3,4-13C4]octanoic acid				
PFNA ¹³ C	Perfluoro[1,2,3,4,5- ¹³ C ₅]nonanoic acid				
PFDA ¹³ C	Perfluoro[1,2- ¹³ C ₂]decanoic acid				
PFUnA ¹³ C	Perfluoro[1,2-13C2]undecanoic acid				
M7PFUnA*	Perfluoro[1,2,3,4,5,6,7-13C7]undecanoic acid				
PFDoA ¹³ C	Perfluoro[1,2- ¹³ C ₂]dodecanoic acid				
M2PFTeA**	Perfluoro[1,2-13C2]tetradecanoic acid				
M2PFHxDA**	Perfluoro[1,2-13C2]hexadecanoic acid				
	Mass-labeled PFS	SAs			
PFHxS ¹⁸ O	Sodium perfluoro-1-hexane[18O2]sulfonate				
PFOS ¹³ C	Sodium perfluoro-1-[1,2,3,4-13C4]octanesulfonate				

*Used as UPLC injection standard

**Purchased as individual solution and added to mass-labeled mixture

Table S3. UPLC solvent gradient

Time	Flow			T_2-T_1
(min)	(mL/min)	%A	%В	Change
0.0	0.4	75	25	
1.0	0.4	75	25	
1.5	0.4	40	60	Linear
9.6	0.4	0	100	Linear
14	0.4	0	100	
14.5	0.4	75	25	Linear
20	0.4	75	25	

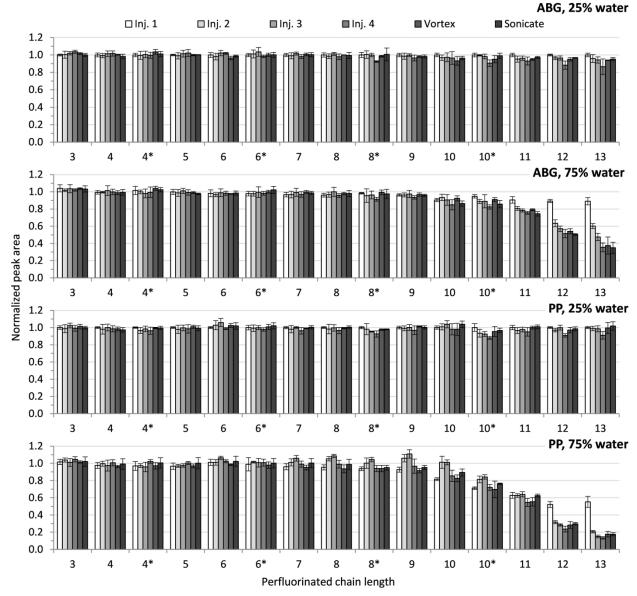
Compound	Quantification	Confirmation	Retention time ^a	RE long ()/)	
Compound	transition (m/z)	m/z	(min)	RF lens (V)	Collision Energy ^b (V)
PFBA	213→169		3.05	30	10
PFBA ¹³ C	217→172		0.57	30	10
PFPeA	263→219		3.57	30	10
PFBS	299→80.2	99.2, 169	3.60	115	50, 50, 25
PFHxA	313→269	119	4.13	40	10, 15
PFHxA ¹³ C	315→270			40	10
M5PFHxA	318→273			35	10
PFHxS	399→80.2	99.2, 169.1	4.74	135	45, 35, 29
PFHxS ¹⁸ O	403→103			135	30
PFHpA	363→319	169	4.80	45	15, 20
PFOA	413→369	169	5.54	50	10, 20
PFOA ¹³ C	417→372			50	10
PFOS	498.9→80	99	6.15	160	40
PFOS ¹³ C	503→99			160	40
PFNA	463→419	219	6.30	50	10, 20
PFNA ¹³ C	468→423	422.986		50	10
PFDA	513→469	219	7.02	55	10, 20
PFDA ¹³ C	515→470			55	10
PFDS	598.9→80.3	99.1, 230.1	7.52	170	60, 60, 50
PFUnA	563→519	169	7.71	62	20, 25
PFUnA ¹³ C	565→520			62	10
M7PFUnA	570→525			62	10
PFDoA	613→569	169	8.35	67	15, 25
PFDoA ¹³ C	615→570			67	10
PFTrA	663→619	169	8.95	50	15, 25
PFTeA	713→669	219	9.49	75	15, 25
M2PFTeA	715→670			75	15
PFHxDA	813→769	219	10.51	50	15
M2PFHxDA	815→770			50	15

Table S4. Compound-specific instrumental parameters

^a Identical values for native and mass-labeled analogs

^b Multiple values correspond to m/z values listed left to right starting with the quantification transition

	Tissue sam n=300	ples		N	Method blanks n=26		
Compound	Mean	St. dev.	%RSD	Mean	St. dev.	%RSD	
PFBA ¹³ C	72%	13%	18%	87%	12%	13%	
PFHxA ¹³ C	83%	14%	17%	87%	12%	13%	
PFHxS ¹⁸ O	92%	11%	12%	94%	9%	9%	
PFOA ¹³ C	78%	20%	26%	91%	12%	14%	
PFOS ¹³ C	93%	12%	13%	92%	8%	9%	
PFNA ¹³ C	83%	8%	9%	90%	7%	7%	
PFDA ¹³ C	83%	8%	9%	89%	6%	7%	
PFUnA ¹³ C	89%	7%	8%	90%	7%	8%	
PFDoA13C	88%	11%	13%	87%	8%	9%	
M2PFTeA	93%	18%	19%	79%	9%	11%	
M2PFHxDA	96%	21%	22%	60%	13%	22%	
M7PFUnA ^a	97%	11%	12%	97%	9%	9%	
Overall mean ^b :	86%	13%	15%	86%	9%	11%	

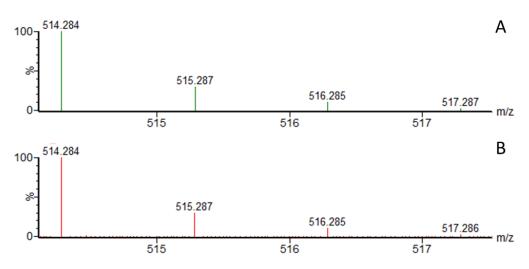

Table S5. Summary of surrogate recoveries obtained using SOP 10.4

^a used as UPLC injection standard

^b overall means exclude M7PFUnA value

Extracted species for which the surrogate recoveries listed in Table S5 were obtained include:

lake trout (*Salvelinus namaycush*), walleye (*Sander vitreus*), spottail shiner (*Notropis hudsonius*), emerald shiner (*Notropis atherinoides*), yellow perch (*Perca flavescens*), white perch (*Morone Americana*), trout perch (*Percopsis omiscomaycus*), round goby (*Neogobius melanostomus*), gizzard shad (*Dorosoma cepedianum*), rainbow smelt (*Osmerus mordax*), slimy sculpin (*Cottus cognatus*), deepwater sculpin (*Myoxocephalus thompsonii*), bloater (*Coregonus hoyi*), alewife (*Alosa pseudoharengus*), *Mysis* (*Mysis diluviana*), and bulk zooplankton and phytoplankton homogenates.


Figure S1. Mean (n=3) normalized peak areas vs. PFAA perfluorinated chain length for each vial material and solvent composition tested. * indicates PFSA. Bars represent sequential injections from day one (Inj. 1-3), day two (Inj. 4), day 2 after vortexing for 2 min (Vortex), and day 2 after sonicating for 2 min (Sonicate). For each vial type, plotted values for each compound are normalized to the mean of the first injections from the solutions containing 25% water. Error bars represent ± std. dev.

S2. Ionization Suppression: Preliminary data suggested that low apparent surrogate recovery for the isotopically labeled surrogate used for PFOA (PFOA¹³C) was likely due to ionization suppression. To test this hypothesis, several matrix spikes were processed alongside samples to test for ionization suppression and/or enhancement during MS analysis. For these tests, a duplicate of one sample in the batch being processed was extracted following SOP 10.4 and spiked with the surrogate mixture and injection standard immediately prior to instrumental analysis. Lake trout (Salvelinus namaycush) tissue was used for these tests because lake trout is the predominant species extracted using SOP 10.4. The results of these matrix spikes are provided in Table S6. Note that only one of three matrix blanks (matrix blank 2) yielded low PFOA¹³C recovery. This is due to the quantity of coextracted matrix interference present. Based on the evidence presented in Figures S2 and S3, this matrix interference is assumed to be taurocholic acid. The sodium salt of taurocholic acid is the primary component of carnivorous animals' bile, and functions as a facilitator of intestinal and liver transport of fats and sterols.⁷ Taurocholic acid possesses structural properties similar to that of PFAAs, allowing it to be carried through the weak anion exchange solid phase extraction procedure. Presumably, the variability of this interference's concentration is due to some degree of heterogeneity among tissue homogenates. During full scan MS analysis, this matrix interference is clearly visible as a large hump in the total ion chromatogram which elutes from the LC column starting very near PFOA, and is present in nearly all biological tissue samples extracted using SOP 10.4. However, only when this species is extracted in sufficient quantity does its chromatographic peak overlap with that of PFOA and cause suppression. This result is demonstrated in Figure S2. Peaks in panels A and B (corresponding to matrix blank 1 from Table S6) do not overlap significantly, and no matrix suppression was observed. However, peaks in panels C and D (corresponding to matrix blank 2 from Table S6) overlap and matrix suppression was observed. It should be noted that PFOA is not expected to bioaccumulate in fish due to rapid elimination,⁸ and is generally not present above the detection limit in the majority of species that have been analyzed following SOP 10.4 to date. Additionally, isotope dilution is utilized for PFOA quantification in SOP 10.4, which should negate the influence of ionization suppression.

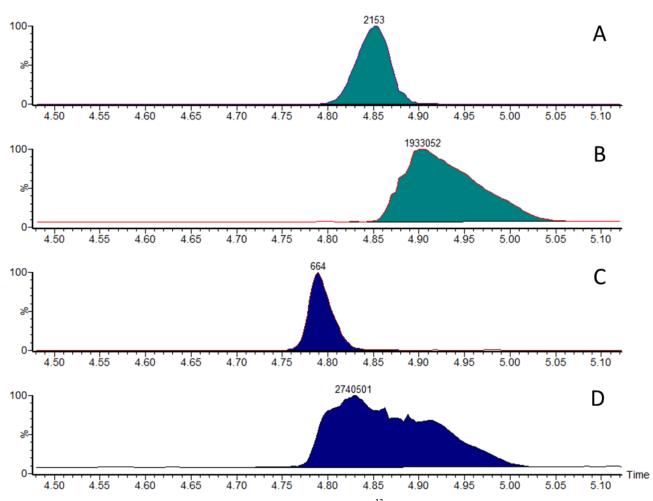

Compound	Matrix blank 1	Matrix blank 2	Matrix blank 3
PFBA ¹³ C	92%	98%	89%
PFHxA ¹³ C	109%	117%	109%
PFHxS ¹⁸ O	91%	93%	90%
PFOA ¹³ C	113%	54%	103%
PFOS ¹³ C	105%	91%	90%
PFNA ¹³ C	99%	97%	92%
PFDA ¹³ C	98%	101%	99%
PFUnA ¹³ C	100%	98%	98%
PFDoA13C	98%	94%	96%
M2PFTeA	88%	99%	111%
M2PFHxDA	105%	112%	113%
M7PFUnA ^a	102%	105%	117%

	Table S6. Summar	y of matrix suppression,	/enhancement encountere	d using SOP 10.4
--	------------------	--------------------------	-------------------------	------------------

^a used as UPLC injection standard

Figure S2. Comparison of theoretical isotope model for taurocholic acid ($C_{26}H_{44}NO_7S$; panel A) and mass spectrum extracted for the chromatographic peak shown in Figure S2, panel D (panel B).

Figure S3. Comparison of peak areas (displayed above each peak) for PFOA¹³C (panels A and C) and total ion chromatograms (panels B and D) for two matrix blanks processed following SOP 10.4. Panels A and B correspond to matrix blank 1 in Table S6, and panels C and D correspond to matrix blank 2. These matrix blanks were extracts of two different whole lake trout homogenates spiked with surrogate immediately prior to UPLC-MS analysis. Taurocholic acid (mass spectrum available in Figure S1, panel B) contributed virtually the entire signal integrated in the peaks displayed in panels B and D.

Compound	Mean % diff.	95% CI
PFHxS	6.9	3.5 – 10.3
PFNA	9.0	5.9 – 12.0
PFOS	6.1	3.5 – 8.7
PFDS	6.5	2.5 – 10.5
PFDA	7.3	4.5 – 10.2
PFUnA	5.0	3.4 - 6.6
PFDoA	7.1	4.3 - 10.0
PFTrA	10.5	6.4 - 14.6
PFTeA	6.4	3.1 – 9.7

Table S7. Reproducibility of duplicate sample analyses using SOP 10.4 (n=16)

Table S8. Summary of PFAS quantified in NIST SRM 1947 using SOP 10.4 (n=18)

	Reference concentration	Mean concentration; st. dev.		Mean
Compound	(ng/g w.w)	(ng/g w.w.)	%RSD	recovery
PFNA	0.20	0.29 ; 0.03	10%	143%
PFOS	5.90 ± 0.39	8.17 ; 0.85	10%	139%
PFDA	0.26	0.30 ; 0.03	11%	116%
PFUnA	0.28	0.39 ; 0.04	9%	140%
PFTrA	0.20	0.32 ; 0.05	15%	161%

References

- 1 S. P. van Leeuwen, A. Kärrman, B. van Bavel, J. de Boer and G. Lindström, *Environmental science & technology*, 2006, **40**, 7854–7860.
- 2 S. P. J. van Leeuwen, C. P. Swart, I. van der Veen and J. de Boer, Journal of Chromatography A, 2009, 1216, 401–409.
- 3 G. Lindström, A. Kärrman and B. van Bavel, Journal of Chromatography A, 2009, 1216, 394–400.
- 4 J. M. Keller, A. M. Calafat, K. Kato, M. E. Ellefson, W. K. Reagen, M. Strynar, S. O'Connell, C. M. Butt, S. A. Mabury, J. Small, D. C. G. Muir, S. D. Leigh and M. M. Schantz, *Analytical and Bioanalytical Chemistry*, 2010, **397**, 439–451.
- J. L. Reiner, S. G. O'Connell, C. M. Butt, S. A. Mabury, J. M. Small, A. O. De Silva, D. C. G. Muir, A. D. Delinsky, M. J. Strynar, A. B. Lindstrom, W. K. Reagen, M. Malinsky, S. Schäfer, C. J. A. F. Kwadijk, M. M. Schantz and J. M. Keller, *Analytical and Bioanalytical Chemistry*, 2012, **404**, 2683–2692.
- 6 J. L. Reiner, A. C. Blaine, C. P. Higgins, C. Huset, T. M. Jenkins, C. J. A. F. Kwadijk, C. C. Lange, D. C. G. Muir, W. K. Reagen, C. Rich, J. M. Small, M. J. Strynar, J. W. Washington, H. Yoo and J. M. Keller, *Analytical and Bioanalytical Chemistry*, 2015, **407**, 2975–2983.
- 7 National Center for Biotechnology Information. PubChem Database., Taurocholic acid, https://pubchem.ncbi.nlm.nih.gov/compound/6675, (accessed August 15, 2019).
- 8 D. M. Consoer, A. D. Hoffman, P. N. Fitzsimmons, P. A. Kosian and J. W. Nichols, Aquatic Toxicology, 2014, 156, 65–73.

Clarkson University

Center for Air Resources Engineering and Science

STANDARD OPERATING PROCEDURE 10.4			
Title: Extracting Perfluorinated Compounds from Biological T	lissues		
Effective date: July 19, 2019	Prepared by: Adam Point		

0 Adapted from:

Method for the Determination of Classes of Perfluoroalkyl Substances (PFASs), Perfluorinated Carboxylic Acids (PFCAs), Perfluorinated Sulfonic Acids (PFSAs), and Perfluoroalkyl Sulfonamides (FASAs), in Liver, Egg and Serum of Wildlife Species

Method Number: MET-OCRL-EWHD-PFC-Version 4-August 2014

Environmental Chemistry/Organic Contaminants Research Laboratory (OCRL)

Ecotoxicology and Wildlife Health Division (EWHD), NWRC Ottawa

The above cited method was obtained through correspondence with Robert Letcher during the initial phases of method development/validation, and was modified in order to improve performance and/or adapt to materials and resources available.

Purpose:

This procedure outlines the method used to extract perfluoroalkyl acids (PFAAs) from homogenized whole fish tissue and

invertebrate samples using an acidic acetonitrile extraction solvent combined with ultrasonication followed by solid phase extraction (SPE) cleanup using a weak anion exchange (WAX) sorbent. This procedure can also be used to analyze samples for

fluorotelomer alcohols (FTOHs) and perfluorinated sulfonamides (FOSAs), but these analytes are not currently analyzed in tissue

- 5 extracts (see step III.II.4).
- 6

Read this SOP in its entirety prior to processing any samples.

Materials Needed:

- 20 Oasis WAX 3 cc Vac Cartridge, 60 mg Sorbent, 30 µm Particle Size, 100/pk Waters PN: 186002490
- Homogenized fish tissue stored at -20°C in tightly sealed PTFE-free container
- 22 Standard reference material 1947 (NIST)
- 23 Mass-labeled (¹³C) PFAA internal standard (IS) mixture (MPFAC-MXA) Wellington Laboratories
- 24 Individual mass-labeled (¹³C) PFAA standards (M2PFTeDA and M2PFHxDA) Wellington Laboratories
- 25 Individual mass-labeled (¹³C) PFAA injection standard (M7PFUdA) Wellington Laboratories
- Individual mass-labeled (¹³C) PFAA injection standard (M5PFHxA) Wellington Laboratories
- 27 PFAA native standard mixture (PFAC-MXB) Wellington Laboratories
- Polypropylene (PP) centrifuge tubes (15 mL) for extraction process Fisher (Evergreen) PN: 05-558-33C
- 29 1 L glass vacuum flask (for drying invertebrate samples)
- Thermo Scientific[™] Nalgene[™] Polysulfone Filter Holder with Funnel Fisher PN: 09-745 (for drying invertebrate samples)
- Grade 41 ashless filter paper circles (Whatman, PN: 1441-047)
- 47 mm pitri dish PALL Corporation (for containing filters when drying invertebrate samples)
- 34
- 35 Optima LC-MS grade methanol (MeOH) Fisher PN: A4564
- Optima LC-MS grade water Fisher PN: W64
- 37 Optima LC-MS grade acetonitrile (ACN) Fisher PN: A955-4
- 38Formic acid (98-100%) Sigma Aldrich PN: 27001-500ML-R
- 39 Screw cap borosilicate glass media storage bottles Fisher PN: 02542355 for storing solvents
- 40 100, 1000, and 5000 μL Eppendorf-style pipettors for spiking standards and transferring solvents
- 41 PP Eppendorf[®] epT.I.P.S. pipette tips Fisher
 - 2-200 μL PN: 0540341
 - 50-1000 μL PN: 0540343
 - 0.1-5 mL PN: 05-403-62
- PP autosampler vials (ASVs) (700 μ L) Waters PN: 186005219
- 46 Septa-less polyethylene ASV screw caps Waters PN: 186004169
- 47 Amber glass ASVs (2 mL) Agilent Technologies PN: 5182-0716
- 48 Double-ended micro-tapered stainless steel spatula Fisher PN: 21-401-10 *Corresponding authors: Email: phopke@clarkson.edu; tholsen@clarkson.edu
 - ^a Institute for a Sustainable Environment, Clarkson University, Potsdam, NY
 - ^b Civil and Environmental Engineering, Clarkson University, Potsdam, NY
 - ^c Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY
 - ^dDepartment of Public Health Sciences, University of Rochester Medical Center, Rochester, NY

eAEACS, LLC, New Kensington, PA

- Ultra-high purity nitrogen gas Airgas (for sample concentration)
- 49 50 51 52 53 54 55
- **Equipment:**
- Analytical balance
- Biologics model 150VT ultrasonic homogenizer Biologics, Inc.
- Titanium microtip Biologics PN: 0-120-0005
- Centrifuge Beckman Coulter Allegra™ 25R Cat No 369434
- 56 SPE vacuum manifold equipped for use with small volume vacuum cartridges
- 57 Sample concentrator – Zymark TurboVap® LV concentration workstation or similar equipped with rack to accommodate 15 mL
- 58 PP centrifuge tubes
- 59

- Instrumentation:
- 61 62 63 64 65 66 Waters® Acquity ultra-performance liquid chromatograph (UPLC®) (Waters Corp., Milford, MA) PFAS analysis kit (Waters Corp., PN 176001744)
- LC isolator column (Waters Corp., PN 186004476)
- Acquity UPLC® HSS T3 analytical column (Waters Corp., 2.1 x 100mm, 1.8 µm, PN 186003539)
- 67 Xevo G2-XS quadrupole time-of-flight (QToF) mass spectrometer (Waters Corp.)
- 68 69

70

I. Solvent and Surrogate Preparation

	I.I. Solid-liquid extraction:	
1.	Acetonitrile + 0.2 % formic acid	6 mL/sample
	a. 200 µL formic acid per 100 mL	
2.	MeOH	
		+ 3x 50 mL PP cent. tubes full for rinsing tip
3.	ACN	
	I.II. <u>SPE:</u>	
	LIL SPE:	
1.	1	1 mL/sample
	a. 2 mL formic acid per 100 mL	
2.	1% NH4OH in MeOH	6 mL/sample
	a. 1 mL 28% NH4OH per 100 mL	
3.	Water	~13 mL/sample
4.	MeOH	

86 87 88

Table 1. Quick reference guide for solvent preparation

Solvent	Amount per batch of 12 samples			
Extraction				
Methanol	Three 50 mL tubes + 100 mL for rinsing			
Acetonitrile Two 50 mL tubes				
Acetonitrile + 0.2% formic acid	$80 \text{ mL} + 160 \mu \text{L}$ formic acid			
SPE				
Water + 2% formic acid	20 mL water + 400 µL formic acid			
Water	175 mL			
Methanol	75 mL			
Methanol + 1% ammonium hydroxide	80 mL + 800 µL ammonium hydroxide			

89 90

Table 2. Ouick reference guide for surrogate preparation for 24 samples (2 batches) Г

autor = Quiter for suite for suite gate propulation for = (sumpres (= sumpres)					
Methanol 2,000 ng/mL C4-C12 surrogate		1,000 ng/mL C14 + C16 surrogate			
1408 μL (704 μL x2)	64 μL	128 μL			

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113

114

115

Methanol	2,000 ng/mL C4-C12
1408 μL (704 μL x2)	64 μL

II.	Sample Extraction	
	. Defrost samples at room temperature immediately prior to extraction (0.5-4 hrs depending on sample mass) or in	

refrigerator overnight

- 2. Obtain clean stainless steel spatulas
 - Can use each end of a spatula for different samples as long as the unused end does not touch any surface a. (including your glove) during mixing and weighing of the first sample
 - Follow cleaning procedure applicable for trace contaminant analysis. Rinse with methanol immediately a. before use and allow spatula to air dry before touching sample
 - i. To dry multiple spatulas at a time, two pieces of methanol rinsed aluminum foil can be folded into triangular strip and laid on the bench top parallel to each other approximately 1-2 inches apart. Place the methanol rinsed spatulas across these pieces of foil to keep them from touching the bench top or other surface while drving.
 - ii. These foil drying strips can be placed in a Ziploc bag and reused
- 3. Obtain two 15 mL PP centrifuge tubes per sample and label 2 tubes for each sample ID
- Rinse one set of these tubes with methanol by using a 5 mL pipettor to add approximately 1 mL of methanol to each 4. tube, then cap the tube, shake, and discard the methanol
 - Rinsing with methanol cleans tube and helps keep tissue from sticking to walls a.
- Remove as much methanol from the tube as possible prior to weighing samples 5.

II.I Invertebrate samples

Perform the following steps for preparing invertebrate samples (plankton, insect larvae, Mysis, amphipods, oligochaetes, etc.)

116 Invertebrate samples are normally frozen with excess water in the sample jar. This water must be removed by following the steps 117 below prior to weighing the sample

118 1. Obtain thawed samples to be extracted

119	2.	Ottawa sand should be used as a method blank for invertebrate samples in order to measure any background that may
120	2.	transfer to a sample during the filtering process. To prepare the Ottawa sand:
121		a. Transfer several grams of Ottawa sand to a 50 mL PP centrifuge tube, add enough methanol to submerge the
122		sand, sonicate for 5 minutes
123		b. Pour the methanol into a waste container and wash the sand several times with LCMS water to rinse off most
124 125		of the remaining methanol
125		c. Pour enough LCMS water into the tube to submerge the sand, sonicate for 5 mind. Pour off the excess water, and then add more LCMS water to the tube to submerge the sand
120	3.	Obtain 1 L glass filter flask, polysulfone funnel and filter holder plate, silicone stopper gasket (gasket is placed at the
128	5.	opening of the flask to seal around the funnel), and piece of tubing to connect the filter flask to the fume hood vacuum
129		e. The polysulfone filter holder plate, funnel, and gasket should be stored in Ziploc bags to keep dust off
130	4.	If the filter funnel and flask have not been used recently, rinse all surfaces that will contact the sample (inside of flask
131		and funnel and filter holder) 3 times with methanol prior to use. A methanol squirt bottle made of non-fluorinated
132		plastic can be used for this or a 5 mL pipettor
133		a. The filter holder plate should be removed from the funnel and wiped thoroughly with a methanol-wetted
134 135		kimwipe prior to rinsing with methanol to ensure removal of more stubborn contamination (e.g. dust or residue from previous samples if not cleaned properly before storage)
135		b. If these parts are suspected to be severely contaminated, after wiping with methanol-wetted kimwipe and
137		rinsing with methanol to remove most of the contamination, place components in a methanol-rinsed beaker,
138		submerge with methanol, and sonicate for 10 minutes.
139	5.	Obtain petri dishes (at least 1 per sample)
140	6.	Obtain 47 mm ashless filters listed in the materials section
141	7.	Use clean (rinse with methanol) forceps to transfer one filter to a pitri dish from step 5 above
142 143	8.	Use a pipettor to transfer enough methanol to the dish to fully cover the filter
143	9. 10	Soak the filter for approximately 1 minute. Swirl the dish occasionally to mix the methanol Insert the gasket into the mouth of the clean filter flask and then insert the bottom half of the funnel and place the filter
144	10.	holder plate on top.
146		f. Ensure the black rubber gasket is installed on the bottom side of the filter plate
147	11.	Use forceps to remove the filter from the soaking dish and place it on the filter holder plate, making sure the filter is
148		centered and covers all of the holes
149		Turn on the fume hood vacuum by loosening the knob until you hear a hissing sound
150		Allow vacuum to dry the filter of any methanol from soaking
151 152	14.	Obtain a sample and mix it well
152		g. Larger invertebrates like <i>Mysis</i> can be mixed using a clean stainless steel spatulah. Smaller invertebrates such as plankton are usually suspended in water and can be mixed by swirling the jar in
154		a circular motion
155	15.	Carefully transfer approximately 0.5 g of sample or prepared Ottawa sand (blank) onto the filter
156		a. Larger invertebrates like <i>Mysis</i> can be transferred using a stainless steel spatula
157		b. Smaller invertebrates such as plankton that are suspended in water can be transferred using a 5 mL pipettor.
158		Slowly dispense the sample onto the filter while a small amount of vacuum is used to drain excess water into
159 160	16	the filter flask
	16.	When all of the sample volume has been dried, turn off the vacuum and use forceps to transfer the filter with sample on it to a new patri dich labeled with the sample ID. Please the tap on the patri dich to keen the sample sourced until
161 162		it to a new petri dish labeled with the sample ID. Place the top on the petri dish to keep the sample covered until weighing
163	17.	Large invertebrates like insect larvae or <i>Mysis</i> have hard exteriors that are not easily broken down by the homogenizer
164		during extraction. These samples should be ground with a stainless steel mortar and pestle prior to weighing. Small
165		invertebrates or those without hard exteriors like plankton do not need to be ground and can be weighed after drying
166		a. Obtain stainless steel mortar and pestle
167		b. If not used recently, follow the procedure for washing equipment for trace organic analysis to wash the
168 169		mortar and pestlec. Rinse the mortar and pestle 3 times with methanol (use a squirt bottle or pipettor)
170		c. Rinse the mortar and pestle 3 times with methanol (use a squirt bottle or pipettor)d. Allow methanol to air dry before grinding a sample
171		e. Use the same spatula as used to transfer the sample to the filter to transfer the dried sample from the filter to
172		the mortar
173		f. Grind the sample until well homogenized into a paste
174		g. The sample is now ready to be weighed
175		h. Repeat this cleaning procedure after each sample
176		i. If samples requiring grinding are analyzed, also transfer the dried Ottawa sand to the cleaned mortar prior to
177 178	10	weighing Before filtering the next sample, wet a kimwipe with methanol and wipe off the side of the filter plate that contacted
178	10.	the filter and sample and rinse the filter flask and funnel assembly 3 times with methanol as described above
180		are most and sumpte and three the most and future assertiory 5 times with includior as described above

181	II.I	I Homogenized Fish Tissue and/or Prepared Invertebrate Samples
182	~	
183 184	6.	Mix sample well with clean, methanol-rinsed stainless steel spatula (or reuse the spatula if used to transfer invertebrate
185	7.	sample) Place a tall glass for on the scale. This will hold the 15 mL tube unright when weighing a sample.
185	7. 8.	Place a tall glass jar on the scale. This will hold the 15 mL tube upright when weighing a sample Place an uncapped, methanol rinsed, labeled 15 mL PP centrifuge tube into the glass jar
180	o. 9.	Tare (zero) the scale
188		Transfer approximately 0.5 g of sample into the tared 15 mL PP centrifuge tube. Try not to let tissue touch the walls of
189	10.	the tube because it will stick and is difficult to get back off
190		b. For invertebrate samples that were transferred to the filter using a spatula, use the same spatula for
191		transferring sample to 15 mL tube
192		c. After transferring ~ 0.5 g of tissue into the tube, use the spatula to scrape most of the tissue stuck on the walls
193		of the tube down towards the bottom of the tube
194		d. When done transferring tissue and scraping off the tube wall, wipe the end of the spatula off with a kimwipe
195		and use the other end of the spatula for the next sample (as long as the other end did not contact any surface
196		while transferring tissue with the first end)
197		e. Weigh approximately 1 g of SRM 1947 (NIST)
198		iii. Note SRM mass is greater than sample mass because PFAA concentrations in SRM are low (~0.2
199		ng/g)
200	11.	Spike 50 μ L 80 ng/mL IS mixture (C ₄ -C ₁₆ , 4 ng of each compound) on top of tissue
201		a. For blanks, add 3 mL of extraction solvent to tube prior to spiking standard
202		Add 3 mL 0.2% formic acid in acetonitrile, tip/rotate tube to rinse down any surrogate spike
203	13.	Obtain one additional 15 mL PP centrifuge tube per sample
204		b. Label with permanent ink and record weight (tube + cap) of each tube
205	14.	Extract samples using ultrasonic homogenizer as follows:
206		c. Set the homogenizer settings to: 50% pulse time, 20% power (will need to have homogenizer on and running
207		to adjust power based on neon green light bar display)
208		i. DO NOT exceed 50% power or tip will be damaged
209		d. Remove tube cap and use homogenizer tip to scrape any tissue residue down the side of the tube wall into the
210		extraction solvent
211		e. Insert the tip about $\sim 1/4$ inch below liquid surface and press the start button
212		f. Sonicate for minimum of 5 pulses
213		i. The sonicator should make minimal noise and there should be considerable turbulence in the liquid
214 215		when the tip is properly positioned. Experiment with tip position to achieve this and count at least 5 "good" pulses
215	15	Remove as much tissue residue from sonicator tip as possible before removing it from the sample tube
217	15.	g. The best way to do this is to insert the tip until it almost touches the bottom of the tube, then tilt/shake the
218		tube back and forth. Then push the tip down until it contacts the bottom of the tube and turn the power on for
219		one pulse while pulling the tip away from the bottom of the tube about 1/4 inch. This will vibrate the tip, but
220		not cause enough turbulence in the solvent to wash tissue back up onto the tube walls.
221	16.	Clean the homogenizer tip between each sample as follows:
222		h. Fold a small kinwipe in half twice in same direction, wet with 1 mL MeOH, and wipe tip thoroughly from
223		starting from the top, wide portion downwards towards the tip to remove tissue residue. Fold the kimwipe in
224		half prior to each wipe to avoid transferring material from kimwipe back onto tip
225		i. Place waste container under tip and use a pipette to rinse the rip with 1 mL of MeOH by dispensing starting
226		at the top, wide portion of the tip and allowing it to run downwards into the waste container
227		j. Immerse sonicator tip into one 50 mL PP centrifuge tube filled with MeOH
228		i. Turn pulse function off, press start, sonicate for approximately 5 sec while moving the tube
229		vertically along the length of the tip to keep the tip exposed to fresh solvent. Do not raise the end of
230		the tip above the solvent surface.
231		k. Repeat step 9. c. with a second tube of MeOH followed by one tube of ACN
232		Centrifuge sonicated sample 4 min., 3500 RCF
233		Transfer supernatant to new, weighed (tube + cap), labeled 15 mL PP tube
234	19.	Repeat above steps 4-9 once more
235		1. Loosen pellet from bottom of tube prior to turning homogenizer on. This can be accomplished by
236		holding the tube in one hand and the wide portion of the sonicator probe with the other for stability. Then
237		insert the tip down the wall of the tube and firmly press down into the tissue pellet. Then use a prying motion
238		to loosen the pellet from the conical tube end.
239		m. The pellet can be manually broken up a bit by squishing the tissue against the side wall of the tube before
240	20	activating sonicator to aid in homogenization
241		Centrifuge (5 min, 5000 RCF), combine supernatants for each respective sample
242	21.	Record weight of tube + cap + combined supernatants

- 243 244
- 245
- 246

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274 275

276

277

278

279

280

247 III. <u>SPE</u>

If using a 12 port manifold, this can be done in batches of 6 samples for easier regulation of solvent flow through the SPE cartridges. Prior to beginning SPE, each port on the manifold should be disassembled and cleaned by sonicating in methanol.
 This eliminates carryover contamination from previous batches found to occur if components are simply rinsed with methanol.

252 <u>III.I. Cleaning SPE Manifold</u> 253

1. When not in use, cover the SPE manifold with a large Ziploc bag to keep dust off

sonicator for 5 minutes. Centrifuge 5 min, 5525 RCF to settle any solids

2. Obtain a cleaned glass beaker large enough to contain all SPE manifold components (≥200 mL). Rinse 3 times with methanol using solvent from media storage bottle or pour straight from 4 L stock bottle (avoid squirt bottles if possible due to higher risk of contamination).

22. Immediately prior to SPE, mix combined supernatants well by vortexing 1 min, 500 rpm and sonication in a bath

- 3. Remove bag dust cover from manifold and remove each of the plastic stopcocks by grabbing it and pulling straight up while twisting
- 4. Disassemble each stopcock by holding the piece that accepts the cartridge with one hand and pulling the rotating cylinder-shaped portion straight out while twisting with the other hand
- 5. Place disassembled stopcocks into rinsed beaker
- 6. Remove lid from SPE manifold. Loosen and remove each plastic retaining nut for each port; place in rinsed beaker
- 7. Replace manifold lid on glass housing and unscrew each port's threaded adapter from top of lid; place into beaker
 - a. If not removed with the stopcock, remove the stainless steel solvent guide needles from each threaded adapter by tapping lightly on a hard, clean surface (e.g. top of SPE manifold lid)
- 8. With all components removed from manifold lid and inside rinsed beaker, fill beaker with enough methanol (from 4 L stock bottle) to submerge all components
- 9. Sonicate for 10 minutes in bath sonicator
- 10. Obtain shallow non-fluorinated plastic (e.g. HDPE or PP) container such as a food storage container with lid and rinse inside surfaces 3 times with methanol
 - a. This container will hold SPE components once sonicated so they can be more easily grabbed and assembled
 - b. If this container is visibly dirty or has not been used for this purpose for a long time, wet a kimwipe with methanol and wipe inner surfaces well to clean prior to rinsing.
 - c. After use, this container should be left in a fume hood until residual methanol is evaporated and then covered and stored in a drawer or cabinet (keeps dust off).
- 11. After sonicating, pour excess methanol into waste container
 - a. Put on new, clean pair of gloves and hold components from falling out of beaker while pouring trying to only touch portions of components which don't contact sample
- 12. Dump components into methanol-rinsed plastic container
- 13. Reassemble all components in reverse order as disassembly (threaded fitting, nut, stainless needle, stopcock)
- 281 282 283

284	III.II. SPE cleanup
285	
286	Unless otherwise stated, "dry" means apply enough vacuum (~5 in Hg) to remove the majority of solvent retained in the
287	sorbent until dripping stops and solvent sputters/splashes from stainless steel needle
288	
289	If sample extracts were stored in the refrigerator after extraction, warm them to room temperature and mix them (step 15 in
290	section II Sample Extraction)
291	
292	Whenever new cartridges are ordered, and the LOT number or sorbent batch number is different from previously used
293	cartridges, they should be tested for abnormally high background levels. To do this, follow step 1.a. below and collect 3 mL
294	of MeOH + 1% NH4OH eluate in a 15 mL PP tube. Collect an additional 1 mL of MeOH + 1% NH4OH eluate in a second tube to
295	ensure the first 3 mL completely cleaned the cartridge. Analyze both of these eluates by UPLC-MS. Typical background levels
296	are <1 ng, but higher levels (30 ng PFOA) have been observed. If high background is detected, contact Waters for
297	replacement of product.
298	
299	 Precondition SPE cartridges (2 mL/min or ~1 drop/s):
300	a. 1% NH ₄ OH in MeOH (3 mL)
301	
302	i. Load 3 mL of 1% NH₄OH in MeOH to each cartridge
	ii. Allow approximately half of the 3 mL to drain (1 drop/s), then close stopcock
303	iii. Soak for 2 minutes
304	iv. Open stopcock and drain remaining solvent until dripping stops, dry the cartridge
305	b. Methanol (3 mL, dry)
306	c. Water (3 mL, DO NOT dry, keep meniscus just above sorbent)
307	2. Load sample onto the cartridge (~1 drop/s):
308	a. First, add 2.62 mL water to head of cartridge
309	b. Add 0.5 mL sample using the following technique:
310	i. Insert the pipette tip (containing sample) into the previously loaded water and dispense
311	approximately half from the pipettor as close to the SPE sorbent as possible without overflowing
312	the top of the cartridge. Then withdraw the tip up towards the surface and dispense the rest of the
313	sample. Sample extracts often appear cloudy when they mix with water in the cartridge. If mixed
314	properly, the liquid should be cloudy from top to bottom. If sample is dispensed too slowly, the
315	sample will not mix with the water and will appear to float, and the top layer will look cloudy and
316	the bottom will be clear.
317	c. Once all samples are loaded, open the stopcocks and drain until the liquid is just above the sorbent.
318	d. Repeat step 2 two more times (load 1.5 mL of each sample)
319	e. Dry the cartridge
320	3. Wash Cartridge:
321	a. 2% aqueous formic acid (1 mL, dry)
322	b. Water (2 x1 mL, keep meniscus above sorbent until second mL has drained)
323	c. Dry for several minutes at 20" Hg until entire sorbent bed appears visibly dry based on color change to
324	lighter color
325	4. Elute fraction 1 (contains neutral FTOHs and FOSAs) – discard (collect if targeting these analytes)
326 327	a. MeOH (1 mL, drain 1 drop/s until dripping stops, do not dry further)
328	5. Wash cartridge
328	a. MeOH (1 mL, drain 1 drop/s until dripping stops, do not dry further)
330	 Elute fraction 2 into new, labeled 15 mL PP centrifuge tube (PFSAs, PFCAs and FTUCAs): a. Load 3 mL1% NH4OH in MeOH
331	a. Load 5 hE1% Whitefi in MeOITb. Allow approximately half of the 3 mL to drain (1 drop/s), then close stopcock
332	c. Soak for 2 minutes
333	d. Open stopcock and drain remaining solvent until dripping stops, do not dry further
334	7. Record weight of tube + cap + remaining extract. The mass fraction of the extract loaded will be used to calculate
335	analyte concentration:
336	
337	

338 IV. Final Cleanup and Preparation 339

IV.I. Fraction 1

NOTE: Fraction 1 is not currently analyzed. These steps were taken from MET-OCRL-EWHD-PFC-Version 4 in case this fraction is analyzed in the future

342 343 7.3.7. Weigh about 20 mg of active carbon in a clean disposable glass tube.

344 7.3.8. Transfer 500µL of the Fraction 1 solution (see 7.3.4) into the tube containing active carbon and mix it with vortex.

345 7.3.9. Add 0.5 mL of methanol in a VWR centrifugal filter, and centrifuge at $6000 \text{ rpm} \times 5 \text{ min}$ to wash the filter. Discard the 346 filtrate.

347 7.3.10. Transfer the mixture of solution and active carbon (7.3.8.) into the centrifugal filter, and centrifuge at 6000 rpm \times 5 min

348 to filter the sample. Transfer the filtrate into a UPLC polypropylene vial (700 µL). The fraction is then ready for analysis of 349 FASAs by UPLC/MS/MS analysis.

IV.II. Fraction 2

- Evaporate to 0.5 mL (5-10 psi N₂ pressure, 55°C) based on tube graduations (takes ~10-12 min.) 1.
 - Use a separate tube with 0.5 mL MeOH added as reference if desired a.
 - Tilt/rotate tube to rinse walls just up to about the 5 mL graduation (where sample contacted) 2.
 - 3. If concentrated below 0.5 mL, dilute with MeOH to 0.5 mL graduation
 - Transfer all sample volume to 700 µL PP ASV 4.

356 If samples are not analyzed by LC-MS on the same day sample prep is completed, store in refrigerator until analyzed. 5. 357 Bring samples to room temperature, vortex, and sonicate 10 minutes in bath sonicator prior to proceeding with addition 358 of injection standard and water 359

- Add 25 µL of 40 ng/mL M7PFUdA injection standard (1 ng mass) 6.
 - 7. Add 175 µL water, invert several times to mix by hand, sonicate for 5 minutes in bath sonicator
- For sonicating autosampler vials, cut a thin sheet of foam (thick enough to float with weight of vials) to the a. desired size and use a hole punch to create holes for vials. Insert vials into holes in foam sheet vial holder so cap is above top of foam, float foam with vials in bath sonicator
- 363 364 365

360

361

362

340

341

350 351

352

353

354

355

367 368	V. <u>LC-MS Analys</u> V L Calibrat		aration (all dilutions done in methan	nol)		
369	Working Stock Solu		tration (an unutions done in methan	<u>ior)</u>		
370	NATIVE:					
371	100 $^{ng}/_{mL}$ Native standard PFAA solution (product code PFAC-MXB): make 400 μ L per batch of calibration standards					
372	• Can make larger amount (>400 μ L and use for multiple batches, <u>store in refrigerator</u>)					
373	Add 50 uL		ition per 1 mL total volume	interpre outen		<u>rigerator</u>)
374	Diluted Native Wor		ation per 1 mil total volume			
375	$10^{\text{ ng}}/\text{mL} \rightarrow 450 \mu\text{L} \text{ M}$		μ L of 100 ^{ng} / _{mL} stock			
376	•	•	μ L of 10 ^{ng} / _{mL} stock			
377	•		μ L of 1 ^{ng} / _{mL} stock			
378	0.1 / mL / 150 µ					
379	SURROGATE:					
380		A A solution (produ	ıct codes: M2PFTeDA, M2PFHxDA)•		
381		a 5 μ g/mL mixed stoc		•		
382			μL of 50 $\mu g/mL$ each M2PFTeDA and M	/2PFHxDA s	tocks	
383	Then dilute	•				
384			μ L of 5 μ g/mL mixed stock			
385						
386	80 ^{ng} /mL C4-C12 (pr	oduct code MPFA(C-MXA) + C14, C16 combined PFA	A solution:		
387	-		extraction, dilute 8x prior to spiking t		standards	
388			lled mixture stock solution per 1 mL to			
389	•		DA/M2PFHxDA mixture solution per		lume	
390	·		Ĩ			
391	INJECTION STAN	DARD:				
392			oduct code M7PFUdA):			
393	Spike 25 µL (1 ng) p					
394		x dilution of 50 μ g/mL				
395	4	50 μL MeOH + 50 μ	$\mu L \text{ of } 50 \ \mu g/_{mL} \text{ stock}$			
396						
397	Make a 5x	dilution of the above	e 5 ^{µg} / _{mL} stock			
398		300 μL MeOH + 200				
399		·				
400	Add 40 µL	of above 1 $\mu g/mL$ sto	ck per 1 mL total volume			
401			-			
402	Table 3. Calibration	standard specifics				
	Native mass (in	-		Surrogate	Inj. Std.	Water
	700 μL)	MeOH (µL)	Native stock	(µĽ)	(µL)	(µL)
	0.01 ng	350	100 μL 0.1 ng/mL stock			

Native mass (in				Surrogate	Inj. Std.	Water
700 μL)	MeOH (µL)		Native stock	(µL)	(µL)	(µL)
0.01 ng	350	100 µL	0.1 ng/mL stock			
0.05 ng	400	50 µL	1 ng/mL stock			
0.2 ng	250	200 µL	1 ng/mL stock	50	25	175
1 ng	350	100 µL	10 ng/mL stock		25	175
5 ng	400	50 µL	100 ng/mL stock			
20 ng	250	200 µL	100 ng/mL stock			

Native PFCAs Perfluoropentanoic acid Perfluorohexanoic acid Perfluorooctanoic acid Perfluorononanoic acid Perfluorodecanoic acid Perfluorodecanoic acid Perfluorodecanoic acid Perfluorodecanoic acid Perfluorodecanoic acid Perfluorodecanoic acid	$CF_{3}(CF_{2})_{3} COOH$ $CF_{3}(CF_{2})_{4} COOH$ $CF_{3}(CF_{2})_{5} COOH$ $CF_{3}(CF_{2})_{6} COOH$ $CF_{3}(CF_{2})_{7} COOH$ $CF_{3}(CF_{2})_{8} COOH$ $CF_{3}(CF_{2})_{8} COOH$	PFHxA ¹³ C PFHxA ¹³ C PFOA ¹³ C PFOA ¹³ C PFNA ¹³ C PFDA ¹³ C
Perfluorohexanoic acid Perfluoroheptanoic acid Perfluorooctanoic acid Perfluorononanoic acid Perfluorodecanoic acid Perfluoroundecanoic acid	CF3(CF2)4 COOH CF3(CF2)5 COOH CF3(CF2)6 COOH CF3(CF2)7 COOH CF3(CF2)8 COOH	PFHxA ¹³ C PFOA ¹³ C PFOA ¹³ C PFNA ¹³ C
Perfluoroheptanoic acid Perfluorooctanoic acid Perfluorononanoic acid Perfluorodecanoic acid Perfluoroundecanoic acid	CF ₃ (CF ₂) ₅ COOH CF ₃ (CF ₂) ₆ COOH CF ₃ (CF ₂) ₇ COOH CF ₃ (CF ₂) ₈ COOH	PFOA ¹³ C PFOA ¹³ C PFNA ¹³ C
Perfluorooctanoic acid Perfluorononanoic acid Perfluorodecanoic acid Perfluoroundecanoic acid	CF ₃ (CF ₂) ₆ COOH CF ₃ (CF ₂) ₇ COOH CF ₃ (CF ₂) ₈ COOH	PFOA ¹³ C PFNA ¹³ C
Perfluorononanoic acid Perfluorodecanoic acid Perfluoroundecanoic acid	CF ₃ (CF ₂) ₇ COOH CF ₃ (CF ₂) ₈ COOH	PFNA ¹³ C
Perfluorodecanoic acid Perfluoroundecanoic acid	CF ₃ (CF ₂) ₈ COOH	
Perfluoroundecanoic acid		PFDA ¹³ C
	CF3(CF2)9 COOH	
Perfluerededecanoic soid	0. 5(01 2)) 00011	PFUnA ¹³ C
r en nuorououecanoic aciu	CF ₃ (CF ₂) ₁₀ COOH	PFDoA13C
Perfluorotridecanoic acid	CF ₃ (CF ₂) ₁₁ COOH	PFDoA13C
Perfluorotetradecanoic acid	CF ₃ (CF ₂) ₁₂ COOH	M2PFTeA
Perfluorohexadecanoic acid	CF3(CF2)14 COOH	M2PFHxDA
Native PFSAs		
Potassium perfluoro-1-butanesulfonate	CF ₃ (CF ₂) ₃ SO ₃ -	PFHxS ¹⁸ O
Sodium perfluoro-1-hexanesulfonate	CF3(CF2)5SO3-	PFHxS ¹⁸ O
Sodium perfluoro-1-octanesulfonate	$CF_3(CF_2)_7SO_3^-$	PFOS13C
Sodium perfluoro-1-decanesulfonate	CF3(CF2)9SO3 ⁻	PFOS13C
Mass-labeled PFCAs		
Perfluoro[1,2,3,4-13C4]butanoic acid		
Perfluoro[1,2- ¹³ C ₂]hexanoic acid		
Perfluoro[1,2,3,4,6- ¹³ C ₅]hexadecanoic acid		
Perfluoro[1,2,3,4- ¹³ C ₄]octanoic acid		
Perfluoro[1,2,3,4,5- ¹³ C ₅]nonanoic acid		
Perfluoro[1,2- ¹³ C ₂]decanoic acid		
Perfluoro[1,2- ¹³ C ₂]undecanoic acid		
Perfluoro[1,2,3,4,5,6,7- ¹³ C7]undecanoic acid		
Perfluoro[1,2-13C2]dodecanoic acid		
Perfluoro[1,2- ¹³ C ₂]tetradecanoic acid		
Perfluoro[1,2- ¹³ C ₂]hexadecanoic acid		
Mass-labeled PFSAs		
Sodium perfluoro-1-hexane[¹⁸ O ₂]sulfonate		
	Perfluorotetradecanoic acid Perfluorohexadecanoic acid Native PFSAs Potassium perfluoro-1-butanesulfonate Sodium perfluoro-1-hexanesulfonate Sodium perfluoro-1-octanesulfonate Sodium perfluoro-1-decanesulfonate Mass-labeled PFCAs Perfluoro[1,2,3,4- ¹³ C4]butanoic acid Perfluoro[1,2,3,4,6- ¹³ C5]hexadecanoic acid Perfluoro[1,2,3,4,5- ¹³ C4]octanoic acid Perfluoro[1,2,3,4,5- ¹³ C5]nonanoic acid Perfluoro[1,2,3,4,5- ¹³ C5]nonanoic acid Perfluoro[1,2,1 ³ C2]decanoic acid Perfluoro[1,2,3,4,5,6,7- ¹³ C7]undecanoic acid Perfluoro[1,2- ¹³ C2]tetradecanoic acid Perfluoro[1,2- ¹³ C2]tetradecanoic acid Perfluoro[1,2- ¹³ C2]hexadecanoic acid Perfluoro[1,2- ¹³ C2]tetradecanoic acid Perfluoro[1,2- ¹³ C2]hexadecanoic acid	Perfluorotetradecanoic acid $CF_3(CF_2)_{12} COOH$ Perfluorohexadecanoic acid $CF_3(CF_2)_{14} COOH$ Native PFSAsNative PFSAsPotassium perfluoro-1-butanesulfonate $CF_3(CF_2)_3SO_3^-$ Sodium perfluoro-1-hexanesulfonate $CF_3(CF_2)_5SO_3^-$ Sodium perfluoro-1-octanesulfonate $CF_3(CF_2)_5SO_3^-$ Sodium perfluoro-1-decanesulfonate $CF_3(CF_2)_5SO_3^-$ Perfluoro[1,2,3,4,-1^3C_4]butanoic acidPerfluoro[1,2,3,4,6,-1^3C_5]nonanoic acidPerfluoro[1,2,-1^3C_2]decanoic acidPerfluoro[1,2,-1^3C_2]decanoic acidPerfluoro[1,2,-1^3C_2]tetradecanoic acidPerfluoro[1,2,-1^3C_2]tetradecanoic acidPerfluoro[1,2,-1^3C_2]tetradecanoic acidPerfluoro[1,2,-1^3C_2]hexadecanoic acidPerfluoro[1,2,-1^3C_2]hexadecanoic acidMass-labeled PFSAs

405 Table 4. Description of target analytes and mass-labeled standards used

V.II. Instrument parameters

420 421 Table 5. UPLC solvent gradient

Time (min)	Flow (mL/min) %A	%B	T ₂ -T ₁ Change
0.0	0.4	75	25	
1.0	0.4	75	25	
1.5	0.4	40	60	Linear
9.6	0.4	0	100	Linear
13.5	0.4	0	100	
14.5	0.4	75	25	Linear
19.5	0.4	75	25	

A: water +0.1% formic acid

B: methanol +0.1% formic acid

Compound	[M-H] ⁻ m/z	[M-H-CO2] ⁻ m/z	Retention time* (min, target , max)	Cone Voltage*1 (V)	Collision Energy*1 (eV)
PFBA	212.979	168.988	2.10, 2.55 , 2.80	3	2
PFBA ¹³ C	216.994	171.999			
PFPeA	262.975	218.986	2.80, 2.96 , 3.25	5	2
PFBS	298.943	N/A	2.80, 3.00 , 3.25	30	10
PFHxA	312.973	268.983	3.25, 3.47 , 3.80	5	2
PFHxA ¹³ C	314.973	269.985			
PFHxS	398.937	N/A	3.80, 4.01 , 4.42	30	15
PFHxS ¹⁸ O	402.937	N/A			
PFHpA	362.970	318.979	3.80, 4.08 , 4.42	5	2
PFOA	412.966	368.976	4.42, 4.79 , 5.15	5	2
PFOA ¹³ C	416.978	371.985			
PFOS	498.930	N/A	5.15, 5.39 , 6.00	30	15
PFOS ¹³ C	502.943	N/A			
PFNA	462.962	418.973	5.15, 5.54 , 6.00	30	3
PFNA ¹³ C	467.980	422.986			
PFDA	512.960	468.971	6.00, 6.28 , 6.60	30	3
PFDA ¹³ C	514.966	469.974			
PFDS	598.923	N/A	6.60, 6.77 , 7.40	30	15
PFUnA	562.957	518.967	6.60, 6.98 , 7.40	30	4
PFUnA ¹³ C	564.962	519.969			
M7PFUnA	569.981	524.987			
PFDoA	612.954	568.964	7.40, 7.63 , 8.00	30	6
PFDoA ¹³ C	614.960	569.968			
PFTrA	662.950	618.960	8.00, 8.22 , 8.55	30	6
PFTeA	712.947	668.956	8.55, 8.77 , 9.30	30	6
M2PFTeA	714.953	669.960			
PFHxDA	812.940	768.950	9.30, 9.74 , 10.40	30	6
M2PFHxDA	814.947	769.954			

441 Table 4. Compound-specific instrumental parameters (Waters Xevo G2-XS QToF)

444 VI. Revision History 445

- 12/16/2016: added 3 mL of methanol +1% ammonium hydroxide as a first conditioning step. This had no impact on 1 method recovery and eliminated background contamination from the SPE cartridge.
- 2. 12/19/2016: changed sample loading procedure from diluting a 2 mL aliquot of combined supernatant with 8 mL of 448 water in second tube to diluting sample within the SPE cartridge. This improved recoveries of PFTeA and PFHxDA by 449 roughly 60% and 20%, respectively.
- 450 3. 11/26/2019: Alteration of methanol elution/wash steps and basic methanol elution step. Prior to this change, 1 mL of 451 methanol was added to the dried cartridge and allowed to elute until dripping ceased, then vacuum (~5 in Hg for several 452 seconds) was applied to drain residual methanol from the sorbent bed. The second mL of wash methanol was then 453 added, and this process repeated. This was altered to eliminate the use of additional vacuum so that the stopcock is 454 closed once the methanol stops dripping.

One additional alteration was the addition of a 2 minute soak during elution of fraction 2 and the elimination of cartridge drying after elution of fraction 2. Prior to this change, 3 mL of methanol +1% ammonium hydroxide was added to the cartridge and allowed to drain until dripping stopped. Vacuum was then increased to ~5 in Hg until the residual solvent in the sorbent bed had been drained. Now, 3 mL of elution solvent are added and approximately half is drained. The stopcock is then closed for 2 minutes, then opened and the remaining volume is drained until dripping ceases. These changes were found to increase method recoveries as well as recovery precision for most analytes. Most noticeably, recoveries for method blanks increased after implementing these changes, likely because analytes are bound more strongly to the adsorbent due to lack of matrix components.

4. 7/19/19 Invertebrate drying procedure was added

465 466 467

446

447

455 456

457

458

459

460

461

462

463

464