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6 SI.1 Cache la Poudre water quality data

7 The City of Fort Collins water utility provided Cache la Poudre River water quality data shown 

8 below in Figure SI-1, Figure SI-2, and Figure SI-3. The “intake” sampling location refers to the intake in 

9 the Cache la Poudre River. The water is transported from the intake to the head of the treatment plant—the 

10 “plant” sampling location—via a concrete pipe, which can affect water quality. See pH and turbidity 

11 impacts in Figure SI-3. 

12 In the Upper Cache la Poudre River Collaborative Water Quality Monitoring Program,1 what we 

13 are calling the “intake” is called Poudre River above the North Fork (PNF) and “reference” is called Poudre 

14 below Rustic (PBR).

15
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16

17 Figure SI-1. Alkalinity, ammonia, calcium hardness, total organic carbon, and total hardness data for the 
18 intake, plant, and reference sampling points for the Cache la Poudre River (2007-2017).

19



20 Figure SI-2. Alkalinity, ammonia, calcium hardness, total organic carbon, and total hardness data chosen 
21 to represent influent water quality data for Cache la Poudre River (2007-2017).  Whenever possible, we 
22 chose data from plant sampling location to represent the influent of the hypothetical water treatment plant 
23 for the case study; however, if plant data was of poor quality or missing, we chose to use intake data instead. 
24 After selecting representative data, we examined which data were within detection limits of measurement 
25 instruments. Since many ammonia data were below detection, we did not use these data points to generate 
26 influent water quality scenarios.

27

28 Figure SI-3. Mean daily pH, temperature, and turbidity at intake and plant sampling locations.
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35

36 SI.2 Assumptions for water quality scenarios

37 The USEPA Water Treatment Plant Model water quality parameter inputs include pH, influent 

38 temperature, total organic carbon (TOC), UV absorbance at 254 nm (UV254), bromide, alkalinity, calcium 

39 hardness, ammonia, and turbidity. Among these water quality parameters, sufficient time series data was 

40 available for TOC, alkalinity, total hardness, and turbidity for generating influent water quality scenarios 

41 as described in SI.7 Modified k-nearest neighbor bootstrap resampling. We estimated the remaining water 

42 quality parameters based on linear relationships between known and unknown parameters and constant 

43 concentration assumptions. 

44 For two parameters with insufficient time series data, calcium hardness and UV254, we found strong 

45 linear relationships with total hardness and TOC, respectively (Figure SI-4 and Figure SI-5). These 

46 relationships allowed us to estimate calcium hardness and UV254 based on known parameters. 

47 For bromide and ammonia—water quality parameters with data below detection limits—less 

48 information was available to inform an estimate of their concentrations. For bromide, in particular, there 

49 are data above detection limits. However, disinfection byproduct speciation data from treatability studies2 

50 found non-zero concentrations of brominated compounds, suggesting bromide concentrations were also 

51 non-zero. Because the WTP Model requires ammonia and bromide; therefore, we assumed that 

52 concentrations of these compounds were the expected value between zero and the detection limit of the 

53 measurement instruments. For instance, the bromide detect limit on record was 0.03 mg/L, therefore, a 

54 value of 0.015 mg/L was assumed. The results of sensitivity analyses and model calibration supported these 

55 assumptions (see SI.3 Disinfection byproduct modeling and calibration for details). 



56

57 Figure SI-4. Linear regression (forced through the origin) of calcium hardness and total hardness which 
58 includes both intake and plant Cache la Poudre River data.

59

60 Figure SI-5. Linear regression (forced through the origin) of ultraviolet absorbance at 254 nm and total 
61 organic carbon which includes both intake and plant Cache la Poudre River data.  



62 SI.3 Disinfection byproduct modeling and calibration

63 The WTP Model estimates disinfection byproduct (DBP) concentrations using multivariate power 

64 law models. The structure of these models is illustrated in the trihalomethane (THM) model for coagulated 

65 waters3 (Equation SI-1): 

66  (SI-1)𝑇𝐻𝑀 = 𝐴(𝑇𝑂𝐶 ∗ 𝑈𝑉254)𝑏(𝐶𝑙2)𝑐(𝐵𝑟 ‒ )𝑑(𝐸)(𝑝𝐻 ‒ 7.5)(𝐹)(𝑇𝑒𝑚𝑝 ‒ 20)(𝑡𝑖𝑚𝑒)𝑔

67 Where parameters A, b, c, d, E, F, and g are empirical fitting parameters, TOC is total organic carbon (mg/L 

68 as C), UV254 is ultraviolet absorbance at 254 nm (1/cm), Br- is bromide concentration (µg/L), pH is pH, 

69 Temp is temperature (°C), and time is the disinfection reaction time in hours. 

70 Although the models follow this power law structure, the predictors and coefficients vary slightly between 

71 DBP models. For instance, to predict the concentration of total trihalomethanes (TTHM), the following 

72 coefficients are used (Equation SI-2):

73  (SI-2)𝑇𝑇𝐻𝑀 = 23.9(𝑇𝑂𝐶 ∗ 𝑈𝑉254)0.403(𝐶𝑙2)0.225(𝐵𝑟 ‒ )0.141(1.1560)(𝑝𝐻 ‒ 7.5)(1.0263)(𝑇𝑒𝑚𝑝 ‒ 20)(𝑡𝑖𝑚𝑒)0.264

74 For review articles DBP modeling in drinking water, see Sadiq and Rodriguez4, Chowdhury et al.5, and Ged 

75 et al.6. 

76 These models were developed using bench-scale treatment tests for diverse surface waters across 

77 the United States. The WTP Model uses these models because they can capture the central tendency of 

78 DBP formation across these source waters. However, there is no guarantee that these models will provide 

79 accurate predictions on a site-specific basis. For this reason, we used bench-scale treatment data for two 

80 sampling points in the Cache la Poudre (CLP) River basin to calibrate the model for the CLP case study. 
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82 Figure SI-6. TTHM formation of observed v. estimates from the coagulated water TTHM formation model 
83 in Amy et al.3 for burned (PNF) and unburned (PBR) sites.

84 To calibrate the model, we first evaluated whether DBP model predictions for the CLP River were 

85 affected by wildfire impacts. Figure SI-6 compares the observed and predicted values at the wildfire-

86 impacted influent (PNF) and the unimpacted reference site (PBR) and suggests similar DBP prediction 

87 between these two sites. Therefore, we decided to use both pre-wildfire and post-wildfire treatability data 

88 for the site-specific model calibration. Furthermore, since there was a limited amount of treatability data, 

89 we used both PNF and PBR data to calibrate the DBP models. 

90 Before calibration, TTHM concentrations were underestimated by 53.4% (Figure SI-7), whereas 

91 the five haloacetic acids species (HAA5) were slightly overpredicted by 4.6% (Figure SI-8). Without 

92 changing any of the parameters in Equation SI-2, we applied a bias correction factor to the predicted DBP 

93 concentrations to fit the one-to-one line for calibration. Post-calibration R2 for observed vs. predicted 

94 TTHM and HAA5 were 0.59 and 0.84, respectively.
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96 Figure SI-7. Observed vs. uncalibrated and calibrated estimates of coagulated water TTHM formation 
97 model in Amy et al.3
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99 Figure SI-8. Observed vs. uncalibrated and calibrated estimates of coagulated water HAA5 formation 
100 model in Amy et al.3
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106 SI.4 Modeling organic carbon removal via coagulation

107 Modeling the removal of organic carbon during coagulation is central to implementing the water 

108 treatment optimization problem formulation discussed in this paper. This section outlines the equations 



109 necessary to organic carbon removal using semi-empirical sorption model developed by Edwards7 that is 

110 used in the Water Treatment Plant (WTP) Model. 

111 The Edwards model assumes that dissolved organic carbon (DOC) can be divided into two 

112 fractions: carbon that is complexed to a hydroxide surface (i.e., the coagulant) and carbon that cannot. These 

113 fractions are referred to as the sorbable and nonsorbable fractions, respectively (Equations SI-3 and SI-4) 

114 and the nonsorbable fraction is dependent on a linear regression of specific UV254 absorbance (Equation SI-

115 5). The DOC concentration after coagulation can be calculated by substituting Equations SI-3, SI-4, SI-5, 

116 and SI-7 into a Langmuir isotherm equation (Equation SI-6). To solve for DOC, the coagulation pH (i.e., 

117 pH after coagulation), raw water UV254, raw water DOC, and six empirical constants (K1, K2, x1, x2, x3, and 

118 b), must be known. Coagulation pH is estimated using acid-base chemistry equations within the WTP  

119 Model and the empirical constants are listed in Table 2 of Edwards7. For the work in Chapter 4, the “General 

120 Al Specific” coefficients were used because aluminum sulfate (alum) was the chosen coagulant.

121  (SI-3)𝐷𝑂𝐶𝑐𝑜𝑎𝑔 =  𝐷𝑂𝐶𝑠𝑜𝑟𝑏,𝑒𝑞 + 𝐷𝑂𝐶𝑛𝑜𝑛𝑠𝑜𝑟𝑏

122 where,

123  (SI-4)𝐷𝑂𝐶𝑛𝑜𝑛𝑠𝑜𝑟𝑏 =  𝐷𝑂𝐶𝑟𝑎𝑤 ∗ 𝐹𝑛𝑜𝑛𝑠𝑜𝑟𝑏

124 and

125  (SI-5)𝐹𝑛𝑜𝑛𝑠𝑜𝑟𝑏 =  𝐾1 ∗ 𝑆𝑈𝑉𝐴𝑟𝑎𝑤 + 𝐾2

126 (SI-6)

𝐷𝑂𝐶𝑟𝑒𝑚𝑜𝑣𝑒𝑑

𝐷𝑜𝑠𝑒𝑐𝑜𝑎𝑔
=  

𝑎 ∗ 𝑏 ∗ 𝐷𝑂𝐶𝑠𝑜𝑟𝑏,𝑒𝑞

1 + 𝑏 ∗ 𝐷𝑂𝐶𝑠𝑜𝑟𝑏,𝑒𝑞

127 where,

128 (SI-7)𝑎 =  𝑥1 ∗ 𝑝𝐻 + 𝑥2 ∗ 𝑝𝐻2 +  𝑥3 ∗ 𝑝𝐻3

129 (R2
adj = 0.98, Standard Error of the Estimate = 0.40 mg/L, n = 608)



130 where,

131 DOCcoag = coagulated water DOC (mg/L): 1.0  DOCcoag £  26

132 DOCraw = raw water DOC (mg/L): 1.8  DOCraw   26.5

133 DOCremoved = [raw water DOC - coagulated water DOC] (mg/L)

134 SUVAraw = raw water SUVA (L/mg•m): 1.32  SUVAraw   6.11

135 Dosecoag = coagulant dose (mmol Al/L): 0  Dosecoag   1.51

136 pH = coagulation pH: 5.5  pH  8.0

137 Within the WTP Model, the Edwards model is used to predict TOC as a proxy for DOC. This TOC-

138 based approach is supported by preliminary tests performed by Edwards that showed that using the DOC-

139 based model for TOC had good predictive ability on independent TOC jar-test results and acceptable 

140 predictive ability for full-scale and pilot-scale test data. Edwards notes, however, that because TOC removal 

141 is nearly 100 percent during coagulation, that the DOC model typically underpredicts TOC removal. In this 

142 way, the TOC removal estimates should tend to be conservative. To refine TOC removal estimates, Tseng 

143 and Edwards8 developed methods for calibrating the TOC model for full-scale use; however, due to data 

144 limitations this approach could not be implemented in the WTP Model, and therefore, could not be 

145 implemented in this work.  

146 SI.5 Water quality setpoint logic and root-finding algorithm

147 SI.5.1 Water quality setpoint logic

148 Figure 4 illustrates the process flow diagram for the simulated conventional treatment plant and 

149 describes the water quality setpoints throughout the system. These values for these setpoints are determined 

150 based on either decision variables, treatment plant heuristics, or water quality regulations. Equations (SI-8 

151 through SI-11) define the setpoint criteria for pH and alkalinity adjustment in the rapid mix unit process, 

152 corrosion control in the distribution system, and the end of distribution system chlorine residual:

153 (SI-8)𝑟𝑚𝑖𝑛𝑓,  𝑎𝑙𝑘 ≥  𝛼𝑎𝑙𝑘 (1 ‒ 𝜀𝑡𝑜𝑙)



154 (SI-9)|𝑟𝑚𝑖𝑛𝑓,  𝑝𝐻 | ≥  𝛼𝑝𝐻 (1 ‒ 𝜀𝑡𝑜𝑙) 

155 (SI-10)|𝑒𝑓𝑓 𝑝𝐻 | ≥  8.0 (1 ‒ 𝜀𝑡𝑜𝑙)

156 (SI-11)|𝑒𝑜𝑠𝑐𝑙2| ≥  0.2 (1 ‒ 𝜀𝑡𝑜𝑙)

157 Where and  are the alkalinity and pH, respectively, at the influent to the rapid mix unit 𝑟𝑚𝑖𝑛𝑓,  𝑎𝑙𝑘 𝑟𝑚𝑖𝑛𝑓,  𝑝𝐻

158 process.  , the error tolerance, is equal to 1%. is the pH at the treatment plant effluent. is the 𝜀𝑡𝑜𝑙 𝑒𝑓𝑓 𝑝𝐻 𝑒𝑜𝑠𝑐𝑙2 

159 end of system chlorine residual. 

160 The rapid mix aluminum sulfate (alum) dose is set based on the following pseudocode: 

161 Set alum to minimum dose, 18 mg/L, to ensure turbidity removal. 

162 Set alum to achieve Enhanced Coagulation total organic carbon removal percentage as a function 

163 of influent alkalinity9 plus a 5% removal safety factor to account for potential drift due to changes 

164 in pH.

165 If end of system TTHM or HAA5 is greater than the maximum contaminant level (MCL), set alum 

166 based on whichever DBP MCL was not been met, attempting to achieve the DBP safety factor, βdbp, 

167 whenever possible.

168 If rapid mix effluent pH is greater than or equal to pHmin or the alkalinity is less than or equal to 

169 0.0, set alum to achieve pH of pHmin. Where the minimum acceptable pH  is 5.5.(𝑝𝐻𝑚𝑖𝑛)

170 SI.5.2 Root-finding algorithm

171 To perform the water quality setpoint search, we developed a root-finding algorithm that uses both 

172 the bisection and secant methods 10. We implemented this hybrid algorithm to handle the non-linearity of 

173 the multivariate power law equations used for DBP modeling and to handle the complex feedbacks in the 

174 treatment plant. The object of a root-finding algorithm is to determine the value (or values) of x where f(x) 



175 = 0. In this case, f(x) is the difference between a given water quality parameter and its setpoint target, and 

176 x is the value of the chemical dose that affects the parameter of interest. 

177 For each iteration of the root-finding algorithm, there is an upper and lower guess, xu and xl, 

178 respectively. The initial guesses for each chemical dose, are listed in Table A4-1. If the signs of f(xu) and 

179 f(xl) are the same, the bisection method is used, otherwise secant method is chosen. To account for cases in 

180 which there are multiple roots, the bisection method has been modified to select the minimum, non-negative 

181 root found during the search. Non-negative roots are non-physical in this case because chemical doses 

182 cannot be negative. We choose the minimum, non-negative chemical dose because we want to minimize 

183 the cost of chemical addition. If no roots are found using the secant method, the non-negative x that 

184 corresponds to the minimum |f(x)| on record is selected.

185 Table SI-1. Upper and lower bounds of guesses for root-finding search by chemical type

Chemical Type Units Lower bound Upper bound
Lime mg/L 0.0 1000.0
CO2 mg/L 0.0 1000.0
Alum mg/L 18.0 1000.0
NaOCl mg/L 0.0 300.0

186

187 SI.6 Simulated treatment train specifications 

188 This section describes the treatment train input parameters for the USEPA Water Treatment Plant 

189 Model. Below, t50 is defined as the median residence time and is typically estimated via tracer testing, and 

190 t10 is defined as the 10th percentile residence time and is typically estimated via tracer testing. 

191  Influent: set based on water quality scenarios (see SI.5 Water quality setpoint logic and root-

192 finding algorithm)

193  Lime, Carbon Dioxide, and Alum

194 o Set based on water quality setpoint logic (see SI.5 Water quality setpoint logic and 

195 root-finding algorithm)



196  Rapid Mix

197 o Volume: 0.0070 million gallons

198 o Hydraulics

199  t50 / detention time: 1.00

200  t10 / detention time: 0.10

201  Flocculation

202 o Volume: 0.0400 million gallons

203 o Hydraulics

204  t50 / detention time: 1.00

205  t10 / detention time: 0.10

206  Settling Basin

207 o Volume: 0.1670 million gallons

208 o Hydraulics 

209  t50 / detention time: 1.00

210  t10 / detention time: 0.10

211  Filtration

212 o Liquid volume: 0.0280 million gallons

213 o Hydraulics

214  t50 / detention time: 1.00

215  t10 / detention time: 0.50

216 o Chlorinated water used for filter backwash: true

217 o Filter media: anthracite and sand

218  Sodium Hypochlorite

219 o Set based on water quality setpoint logic (see SI.5 Water quality setpoint logic and 

220 root-finding algorithm)

221  Contact Tank

222 o Volume: 1.0 million gallons

223 o Hydraulics

224  t50 / detention time: 1.00

225  t10 / detention time: 0.50

226  Lime and Carbon Dioxide: set based on water quality setpoint logic (see SI.5 Water quality 

227 setpoint logic and root-finding algorithm)

228  Distribution Detention Times: average tap (1.0 day) and end of system (4.0 days)



229 SI.7 Modified k-nearest neighbor bootstrap resampling 

230 This section describes the modified k-nearest neighbor bootstrap resampling algorithm developed 

231 in Raseman et al.11: To generate water quality scenarios, the k-NN method resamples historical data 

232 conditioned on a “feature vector”. The choice of feature vector is dependent on two variables: the number 

233 of lags and number of water quality variables. The lag is important for realistically representing the 

234 persistence (i.e., autocorrelation, memory) of the historical water quality. For example, a source water with 

235 high organic carbon persistence means that the value tends to change very little from one timestep to the 

236 next. By considering multiple water quality variables, the k-NN method also attempts to capture the joint 

237 correlation among variables. Based on the feature vector for a given timestep, the algorithm calculates the 

238 nearest neighbors on the historical record from a set of candidate observations based on multivariate 

239 distance. Among the nearest neighbors, only the top k are considered. In this case, we use the heuristic from 

240 Lall and Sharma12 where . From these few neighbors, the simulated value 𝑘 = ‖ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠‖

241 (i.e., the successor) is selected using a weighting function that assigns the greatest probability of the 1st 

242 nearest neighbor being chosen and the least probability of choosing the kth neighbor. After a successor is 

243 selected, random variation is added to generate values outside of the historical record. The process then 

244 moves forward by one timestep and repeats until a user-defined number of water quality simulations is 

245 reached. 
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