Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2019

Review on magnetic nano ferrites and their composites as an alternative in Waste Water Treatment: Synthesis, modifications and applications

Authors: Mukesh Kumar¹, Harmanjit Singh Dosanjh², Sonika², Jandeep Singh², Kamarul Monir¹, Harminder Singh^{2,*}

¹ Oil and Natural Gas Corporation,

Mumbai, Maharashtra-400051, India

² Department of Chemistry

School of Chemical Engineering and Physical Science,

Lovely Professional University, Phagwara

Punjab-144411, India

* Corresponding Author

Email: harminder env@yahoo.com

Supplementary Material

Hessien *et al.* [36] synthesized $SrFe_{12}O_{19}$ by chemical co-precipitation method at calcination temperature of 900, 1000 and 1100 °C. Table 1 represents the effect of annealing temperature that influence size and different magnetic properties of prepared nano ferrites.

Table 1: Effect of annealing temperature on the formation, crystalline size and magnetic properties of $SrFe_{12}O_{19}$ powder precipitated at pH 10 for Fe³⁺/ Sr²⁺ mole ratio: (a) 10 and (b) 9.23 annealed for 2 h. (Reproduced with permission from Ref. [36] Copyright © 2007 Elsevier B.V.)

Fe ³⁺ /Sr ²⁺	Annealing	% Phase change	Crystalline	Magnetic	Properties	M _r
	temp. (°C)	obtained	size	$H_{c}(O_{e})$	M _s (emu /g)	(emu/g)
10.0	800	65% SrFe ₁₂ O ₁₉	82.9	4524	50.64	27.06
		35% Fe ₂ O ₃	71.0			
	900	70% SrFe ₁₂ O ₁₉	106.3	5060	55.18	29.85
		30% Fe ₂ O ₃	109.5			
	1000	70% SrFe ₁₂ O ₁₉	128.3	5168	55.85	29.85
		30% Fe ₂ O ₃	189.4			
	1100	63% SrFe ₁₂ O ₁₉	186.6	4779	56.9	31.31
		34% Fe ₂ O ₃	208.7			
9.2	800	92% SrFe ₁₂ O ₁₉	114.5	4727	61.47	31.89
		8% Fe ₂ O ₃				
	900	100% SrFe ₁₂ O ₁₉	98.0	5158	64.72	34.80
	1000	100% SrFe ₁₂ O ₁₉	118.8	4434	84.15	45.04
	1100	100% SrFe ₁₂ O ₁₉	158.8	2937	65.49	35.19

2.0 Metal and Their Oxide Deposition

Effect of metal and their oxide deposition affect crystallite size, morphology and magnetic properties of different nano ferrites. For example, Rashad *et al.* [60] prepared Sm substituted $CoFe_2O_4$ by citrate precursor method and studied the effect of Sm content on crystal

structure, crystallite size, morphology and magnetic properties of $CoSm_xFe_{2-x}O_4$. Table 2 represents the effect of Sm ions content on crystal size and magnetic properties of prepared composites and the analysis revealed that the crystalline size of produced nano composite decreased by increase in Sm content and increased with increasing the calcination temperature from 400 to 1000 °C.

Table 2: Average crystalline size of produced $CoFe_{2-x}Sm_xO_4$ at different temperature from 400 to 1000° C where x = 0.0-0.4. (Reproduced with permission from Ref. [60] Copyright © 2007 Elsevier B.V.)

Temperature (°C)	Sm Content x (0.0–0.4)	Crystalline size (nm)		
400	0.0	21.5		
	0.1	14.9		
	0.2	10.8		
	0.3	9.4		
	0.4	7.6		
600	0.0	30.6		
	0.1	18.8		
	0.2	12.4		
	0.3	10.8		
	0.4	9.7		
800	0.0	52.1		
	0.1	33.7		
	0.2	27.6		
	0.3	25.5		
	0.4	21.2		
1000	0.0	85.9		
	0.1	75.8		
	0.2	61.9		
	0.3	53.7		
	0.4	50.9		