Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Effect of Influent Carbon Fractionation and Reactor Configuration on Mainstream

Nitrogen Removal and NOB Out-Selection

Stephanie A. Klaus^{1*}, Michael S. Sadowski¹, Maureen N. Kinyua², Mark W. Miller³, Pusker Regmi³, Bernhard Wett⁴, Haydee De Clippeleir⁵, Kartik Chandran⁶, Charles B. Bott⁷ *Corresponding author: Tel. +1 814 404 3601; e-mail sklaus@vt.edu

¹Civil and Environmental Engineering Department, Virginia Tech, Blacksburg, Virginia
²Civil and Environmental Engineering, University of California Davis, Davis California
³Brown and Caldwell, 201 N Civic Dr #300, Walnut Creek, CA 94596
⁴ARA Consult, Unterbergerstraße. 1, A-6020 Innsbruck, Austria
⁵DC Water Authority, 5000 Overlook Ave. SW, Washington DC
⁶Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027
⁷Hampton Roads Sanitation District, 1434 Air Rail Ave., Virginia Beach, Virginia

Target Gene	qPCR Primer	Nucleotide Sequence (5'-3')	Base Pairs	Reference
Universal 16S rRNA	1055F	ATGGCTGTCGTCAGCT	353	Ferris et al, 1996
	1392R	ACGGGCGGTGTGTAC		
amoA	amoA-1F	GGGGTTTCTACTGGTGGT	491	Rotthauwe et al, 1997
	amoA-2R	CCCCTCKGSAAAGCCTTCTTC		
Nitrospira 16S rRNA	NSPRA-675f	GCGGTGAAATGCGTAGAKATCG	67	Kindaichi et al, 2006
	NSPRA-746r	TCAGCGTCAGRWAYGTTCCAGAG		
	Nspra-723Taq	CGCCGCCTTCGCCACCG		
Nitrobacter 16S rRNA	Nitro-1198f	ACCCCTAGCAAATCTCAAAAAACCG	227	Graham et al, 2007
	Nitro-1423r	CTTCACCCCAGTCGCTGACC		
	Nitro-1374Taq	AACCCGCAAGGGAGGCAGCCGACC		

Table S1: Summary of primers utilized for qPCR analysis

Thermal cycling profile for qPCR

Thermal cycling for universal 16S rRNA gene was carried out with an initial denaturation step at 94°C for 3 min, which was followed by 40 cycles of denaturation at 94°C for 30 s, primer annealing at 54°C for 40 s, and elongation at 72°C for 45 s. Melt curve analysis was performed from 50-95 °C with 0.5 °C increments, each for 10s.

Thermal cycling for *amoA* gene was carried out with an initial denaturation step at 94°C for 2 min, which was followed by 40 cycles of denaturation at 94°C for 30 s, primer annealing at 57°C for 40 s, and elongation at 72°C for 30 s. Melt curve analysis was performed from 50-95 °C with 0.5 °C increments, each for 10s.

Thermal cycling for *Nitrospira* 16S rRNA gene was carried out with an initial denaturation step at 94°C for 10 min, which was followed by 40 cycles of denaturation at 94°C for 30 s, primer annealing at 58°C for 30 s, and elongation at 72°C for 40 s.

Thermal cycling for *Nitrobacter* 16S rRNA gene was carried out with an initial denaturation step at 94°C for 5 min, which was followed by 40 cycles of denaturation at 94°C for 20 s, primer annealing at 58°C for 40 s, and elongation at 72°C for 40 s.

Explanation of Nitrification and Denitrification Rate Test Calculations

During nitrification, all NO₃⁻ produced was once NO₂⁻. Similarly, during denitrification, all NO₃⁻ must first be reduced to NO₂⁻ before N₂ gas. So it is assumed that all NO₃⁻ reduced to N₂ gas (full denitrification), is at some point NO₂⁻. In the AOB/NOB test if nitrite is accumulating then AOB rate is faster than NOB rate. Similarly, in the denitrification batch test, if nitrite is accumulating then the denitrigation rate (NO₃⁻ to NO₂⁻) is faster than the denitrigation rate (NO₂⁻ to N₂ gas). See figure S1 for a graphical representation of the potential batch test results.

Nitrification Rate Test Calculations:

AOB (nitr<u>i</u>tation) and NOB (nitr<u>a</u>tation) rates are measured simultaneously under aerobic conditions, without substrate limitation. NOB rates are measured as the change in NO_3^- over time and AOB rates are measured as the change in NO_3^- over time and AOB rates are measured as the change in NO_x ($NO_3^- + NO_2^-$) over time.

Measured Rates:

 $rNO_{2}^{-} = nitrite rate measured in batch test$ $rNO_{3}^{-} = nitrate rate measured in batch test$ $rNO_{x} = rNO_{2}^{-} + rNO_{3}^{-}$

Unknown Rates: $rNO_{2 NOB}^{-} = rate \ of \ nitrite \ consumed \ by \ NOB$ $rNO_{2 AOB}^{-} = rate \ of \ nitrite \ produced \ by \ AOB$ $rNO_{3 NOB}^{-} = rate \ of \ nitrate \ produced \ by \ NOB$

Assume:

$$NO_{3}^{-}$$
 can only be produced by NOB, so $rNO_{3}^{-} = rNOB_{NO3}$
 NO_{2}^{-} is produced by AOB and consumed by NOB

 $rNO_{3 NOB}^{-} = rNO_{2 NOB}^{-}$

Calculations:

From equations above: $rNO_3^- = rNO_3^- = rNO_2^- = -rNO_2^- = rNO_2^-$

Therefore
$$rNO_3^- = -rNO_2^- NOB$$
 (EQ 1)

$$rNO_{2}^{-} = rNO_{2AOB}^{-} + rNO_{2NOB}^{-}$$
 (EQ 2)

By substituting EQ 1 into EQ 2: $rNO_{2AOB}^{-} = rNO_{2}^{-} + rNO_{3}^{-}$

Therefore: $rNO_{2AOB}^{-} = rNO_{x}$

Denitrification Rate Test Calculations:

The denitr<u>a</u>tation (NO₃⁻ to NO₂⁻) rates and denitr<u>i</u>tation (NO₂⁻ to N2 gas) rates are measured simultaneously under anoxic conditions, without substrate limitation. Denitr<u>a</u>tation rates are measured as the change in NO₃⁻ over time and denitr<u>i</u>tation rates are measured as the change in NO_x (NO₃⁻ +NO₂⁻) over time.

Measured Rates:

 $rNO_{2}^{-} = nitrite rate measured in batch test$ $rNO_{3}^{-} = nitrate rate measured in batch test$ $rNO_{x} = rNO_{2}^{-} + rNO_{3}^{-}$

Unknown Rates:

 $rNO_{2 denNO2-N2}^{-} = rate of nitrite consumed by denitritation$ $rNO_{2 denNO3-NO2}^{-} = rate of nitrite produced by denitratation$ $rNO_{3 denNO3-NO2}^{-} = rate of nitrate consumed by denitratation$

Assume:

 NO_{3}^{-} can only be consumed by denitr<u>a</u>tation, so $rNO_{3}^{-} = rNO_{3 denNO3 - NO2}^{-}$ NO_{2}^{-} is produced by denitr<u>a</u>tation and consumed by denitr<u>i</u>tation $rNO_{3 denNO3 - NO2}^{-} = rNO_{2 denNO3 - NO2}^{-}$

Calculations:

From equations above: $-rNO_3^- = rNO_3^- denNO3 - NO2 = rNO_2^- denNO3 - NO2$

Therefore $-rNO_3^- = rNO_2^- denNO3 - NO2$ (EQ 1)

 $rNO_{2}^{-} = rNO_{2 denNO3 - NO2}^{-} + rNO_{2 denNO2 - N2}^{-}$ (EQ 2)

By substituting EQ 1 into EQ 2: $rNO_2^{-} denNO2 - N2 = -rNO_3^{-} + rNO_2^{-}$

Therefore:
$$rNO_2^- denNO_2 - N2 = -rNO_x$$

Figure S1: Examples of theoretical batch tests with varying AOB/NOB and NO_3^-/NO_2^- reduction rates

Figure S2: Particulate COD (pCOD) and soluble COD (sCOD, 1.5µm filtered) vs. total COD (tCOD) for A-stage effluent and primary clarifier effluent.

Figure S3: Concentration of influent and effluent ammonia, effluent nitrite, and effluent nitrate over time

Figure S4: Effluent TIN vs. aerobic fraction for the fully intermittent scenarios (FI_ASE and FI_PCE).

Figure S5: NOB rate and NO_2 -specific denitrification rates from ex-situ maximum activity rate tests in mg/MLSS/hr and nitrite accumulation ratio (NAR).