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Table S1: Summary of primers utilized for qPCR analysis

Target Gene qPCR Primer Nucleotide Sequence (5’-3’)
Base 
Pairs

Reference

1055F ATGGCTGTCGTCAGCT
Universal 16S rRNA

1392R ACGGGCGGTGTGTAC
353

Ferris et 
al, 1996

amoA-1F GGGGTTTCTACTGGTGGT
amoA

amoA-2R CCCCTCKGSAAAGCCTTCTTC
491

Rotthauwe 
et al, 1997

NSPRA-675f GCGGTGAAATGCGTAGAKATCG

NSPRA-746r TCAGCGTCAGRWAYGTTCCAGAGNitrospira 16S rRNA

Nspra-723Taq CGCCGCCTTCGCCACCG

67
Kindaichi 

et al, 2006

Nitro-1198f ACCCCTAGCAAATCTCAAAAAACCG

Nitro-1423r CTTCACCCCAGTCGCTGACCNitrobacter 16S rRNA

Nitro-1374Taq AACCCGCAAGGGAGGCAGCCGACC

227
Graham et 

al, 2007

Thermal cycling profile for qPCR

Thermal cycling for universal 16S rRNA gene was carried out with an initial denaturation step at 94°C 
for 3 min, which was followed by 40 cycles of denaturation at 94°C for 30 s, primer annealing at 54°C for 
40 s, and elongation at 72°C for 45 s. Melt curve analysis was performed from 50-95 °C with 0.5 °C 
increments, each for 10s.

Thermal cycling for amoA gene was carried out with an initial denaturation step at 94°C for 2 min, which 
was followed by 40 cycles of denaturation at 94°C for 30 s, primer annealing at 57°C for 40 s, and 
elongation at 72°C for 30 s. Melt curve analysis was performed from 50-95 °C with 0.5 °C increments, 
each for 10s.

Thermal cycling for Nitrospira 16S rRNA gene was carried out with an initial denaturation step at 94°C 
for 10 min, which was followed by 40 cycles of denaturation at 94°C for 30 s, primer annealing at 58°C 
for 30 s, and elongation at 72°C for 40 s.

Thermal cycling for Nitrobacter 16S rRNA gene was carried out with an initial denaturation step at 94°C 
for 5 min, which was followed by 40 cycles of denaturation at 94°C for 20 s, primer annealing at 58°C for 
40 s, and elongation at 72°C for 40 s.
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Explanation of Nitrification and Denitrification Rate Test Calculations

During nitrification, all NO3
- produced was once NO2

-. Similarly, during denitrification, all NO3
- must first 

be reduced to NO2
- before N2 gas. So it is assumed that all NO3

- reduced to N2 gas (full denitrification), is 
at some point NO2

-. In the AOB/NOB test if nitrite is accumulating then AOB rate is faster than NOB rate. 
Similarly, in the denitrification batch test, if nitrite is accumulating then the denitratation rate (NO3

- to 
NO2

-) is faster than the denitritation rate (NO2
- to N2 gas). See figure S1 for a graphical representation of 

the potential batch test results.  

Nitrification Rate Test Calculations:

AOB (nitritation) and NOB (nitratation) rates are measured simultaneously under aerobic conditions, 
without substrate limitation. NOB rates are measured as the change in NO3

- over time and AOB rates are 
measured as the change in NOx (NO3

- +NO2
-) over time. 

Measured Rates:

𝑟𝑁𝑂 ‒
2  =  𝑛𝑖𝑡𝑟𝑖𝑡𝑒 𝑟𝑎𝑡𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑖𝑛 𝑏𝑎𝑡𝑐ℎ 𝑡𝑒𝑠𝑡

𝑟𝑁𝑂 ‒
3  =  𝑛𝑖𝑡𝑟𝑎𝑡𝑒 𝑟𝑎𝑡𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑖𝑛 𝑏𝑎𝑡𝑐ℎ 𝑡𝑒𝑠𝑡

𝑟𝑁𝑂𝑥  =  𝑟𝑁𝑂 ‒
2 +  𝑟𝑁𝑂 ‒

3 

Unknown Rates:
𝑟𝑁𝑂 ‒

2 𝑁𝑂𝐵 =  𝑟𝑎𝑡𝑒 𝑜𝑓 𝑛𝑖𝑡𝑟𝑖𝑡𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑏𝑦 𝑁𝑂𝐵

𝑟𝑁𝑂 ‒
2 𝐴𝑂𝐵 =  𝑟𝑎𝑡𝑒 𝑜𝑓 𝑛𝑖𝑡𝑟𝑖𝑡𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑏𝑦 𝐴𝑂𝐵

𝑟𝑁𝑂 ‒
3 𝑁𝑂𝐵 =  𝑟𝑎𝑡𝑒 𝑜𝑓 𝑛𝑖𝑡𝑟𝑎𝑡𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑏𝑦 𝑁𝑂𝐵

Assume:

 can only be produced by NOB, so 𝑁𝑂 ‒
3 𝑟𝑁𝑂 ‒

3  =  𝑟𝑁𝑂𝐵𝑁𝑂3

is produced by AOB and consumed by NOB𝑁𝑂 ‒
2  

𝑟𝑁𝑂 ‒
3 𝑁𝑂𝐵 =  𝑟𝑁𝑂 ‒

2 𝑁𝑂𝐵 

Calculations:

From equations above: 𝑟𝑁𝑂 ‒
3  =  𝑟𝑁𝑂 ‒

3 𝑁𝑂𝐵 =  ‒ 𝑟𝑁𝑂 ‒
2 𝑁𝑂𝐵

Therefore  (EQ 1)𝑟𝑁𝑂 ‒
3  =  ‒ 𝑟𝑁𝑂 ‒

2 𝑁𝑂𝐵

(EQ 2)𝑟𝑁𝑂 ‒
2 =  𝑟𝑁𝑂 ‒

2 𝐴𝑂𝐵 +  𝑟𝑁𝑂 ‒
2 𝑁𝑂𝐵  

By substituting EQ 1 into EQ 2: 𝑟𝑁𝑂 ‒
2 𝐴𝑂𝐵 =   𝑟𝑁𝑂 ‒

2 +  𝑟𝑁𝑂 ‒
3 

Therefore: 𝑟𝑁𝑂 ‒
2 𝐴𝑂𝐵 =  𝑟𝑁𝑂𝑥 
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Denitrification Rate Test Calculations:

The denitratation (NO3
- to NO2

-) rates and denitritation (NO2
- to N2 gas) rates are measured 

simultaneously under anoxic conditions, without substrate limitation. Denitratation rates are measured 
as the change in NO3

- over time and denitritation rates are measured as the change in NOx (NO3
- +NO2

-) 
over time. 

Measured Rates:

𝑟𝑁𝑂 ‒
2  =  𝑛𝑖𝑡𝑟𝑖𝑡𝑒 𝑟𝑎𝑡𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑖𝑛 𝑏𝑎𝑡𝑐ℎ 𝑡𝑒𝑠𝑡

𝑟𝑁𝑂 ‒
3  =  𝑛𝑖𝑡𝑟𝑎𝑡𝑒 𝑟𝑎𝑡𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑖𝑛 𝑏𝑎𝑡𝑐ℎ 𝑡𝑒𝑠𝑡

𝑟𝑁𝑂𝑥  =  𝑟𝑁𝑂 ‒
2 +  𝑟𝑁𝑂 ‒

3 

Unknown Rates:
𝑟𝑁𝑂 ‒

2 𝑑𝑒𝑛𝑁𝑂2 ‒ 𝑁2 =  𝑟𝑎𝑡𝑒 𝑜𝑓 𝑛𝑖𝑡𝑟𝑖𝑡𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑏𝑦 𝑑𝑒𝑛𝑖𝑡𝑟𝑖𝑡𝑎𝑡𝑖𝑜𝑛

𝑟𝑁𝑂 ‒
2 𝑑𝑒𝑛𝑁𝑂3 ‒ 𝑁𝑂2 =  𝑟𝑎𝑡𝑒 𝑜𝑓 𝑛𝑖𝑡𝑟𝑖𝑡𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑏𝑦 𝑑𝑒𝑛𝑖𝑡𝑟𝑎𝑡𝑎𝑡𝑖𝑜𝑛

𝑟𝑁𝑂 ‒
3 𝑑𝑒𝑛𝑁𝑂3 ‒ 𝑁𝑂2 =  𝑟𝑎𝑡𝑒 𝑜𝑓 𝑛𝑖𝑡𝑟𝑎𝑡𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑏𝑦 𝑑𝑒𝑛𝑖𝑡𝑟𝑎𝑡𝑎𝑡𝑖𝑜𝑛

Assume:

 can only be consumed  by denitratation, so 𝑁𝑂 ‒
3 𝑟𝑁𝑂 ‒

3  =  𝑟𝑁𝑂 ‒
3 𝑑𝑒𝑛𝑁𝑂3 ‒ 𝑁𝑂2

is produced by denitratation and consumed by denitritation𝑁𝑂 ‒
2  

𝑟𝑁𝑂 ‒
3 𝑑𝑒𝑛𝑁𝑂3 ‒ 𝑁𝑂2 =  𝑟𝑁𝑂 ‒

2 𝑑𝑒𝑛𝑁𝑂3 ‒ 𝑁𝑂2 

Calculations:

From equations above: ‒ 𝑟𝑁𝑂 ‒
3  =  𝑟𝑁𝑂 ‒

3 𝑑𝑒𝑛𝑁𝑂3 ‒ 𝑁𝑂2 =  𝑟𝑁𝑂 ‒
2 𝑑𝑒𝑛𝑁𝑂3 ‒ 𝑁𝑂2

Therefore  (EQ 1)‒ 𝑟𝑁𝑂 ‒
3  =  𝑟𝑁𝑂 ‒

2 𝑑𝑒𝑛𝑁𝑂3 ‒ 𝑁𝑂2

(EQ 2)𝑟𝑁𝑂 ‒
2 =  𝑟𝑁𝑂 ‒

2 𝑑𝑒𝑛𝑁𝑂3 ‒ 𝑁𝑂2 +  𝑟𝑁𝑂 ‒
2 𝑑𝑒𝑛𝑁𝑂2 ‒ 𝑁2  

By substituting EQ 1 into EQ 2: 𝑟𝑁𝑂 ‒
2 𝑑𝑒𝑛𝑁𝑂2 ‒ 𝑁2 =   ‒ 𝑟𝑁𝑂 ‒

3 +  𝑟𝑁𝑂 ‒
2 

Therefore: 𝑟𝑁𝑂 ‒
2 𝑑𝑒𝑛𝑁𝑂2 ‒ 𝑁2 =  ‒ 𝑟𝑁𝑂𝑥 
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Figure S1: Examples of theoretical batch tests with varying AOB/NOB and NO3
-/NO2

- reduction 
rates
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Figure S2: Particulate COD (pCOD) and soluble COD (sCOD, 1.5μm filtered) vs. total COD 
(tCOD) for A-stage effluent and primary clarifier effluent. 

Figure S3: Concentration of influent and effluent ammonia, effluent nitrite, and effluent nitrate 
over time
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Figure S4: Effluent TIN vs. aerobic fraction for the fully intermittent scenarios (FI_ASE and 
FI_PCE). 

Figure S5: NOB rate and NO2
- specific denitrification rates from ex-situ maximum activity rate 

tests in mg/MLSS/hr and nitrite accumulation ratio (NAR). 


