Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2020

Supplementary info to

Impact of transformation, photodegradation and interaction with glutaraldehyde on the acute toxicity of the biocide DBNPA in cooling tower water

Thomas V. Wagner^{ab}, Rick Helmus^a, Elmar Becker^a, Huub H.M. Rijnaarts^b, Pim de Voogt^{ac}, Alette A.M. Langenhoff^b, John R. Parsons^a

^a Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94248, 1092 GE Amsterdam, The Netherlands

^b Department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 EV Wageningen, The Netherlands

^c KWR Water Research Institute, Chemical Water Quality and Health, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands

Content

Figure S1	Wavelength intensity distribution of sunlight and synthetic sunlight
Figure S2	The data-processing workflow initialized by 'patRoon'
Text S1	The full R-script for data-processing of the non-target screening data for positive
	ionization
Figure S3	24 h LC_{50} for $K_2Cr_2O_7$
Table S1	pH, oxygen content and temperature of EC ₅₀ test solutions
Table S2	pH, oxygen content and temperature of photodegradation toxicity solutions
Text S2	Detailed info about TP1-MBNPA
Text S3	Detailed info about TP2-2,2-dibromopropanediamide
Figure S4	Peak intensities of DBNPA TPs in the dark at t=1
Figure S5	DBNPA degradation pathways in the dark
Text S4	Detailed info about TP3-dibromoacetamide
Text S5	Detailed info about TP4-mz461
Text S6	Detailed info about TP5-mz153
Text S7	Detailed info about TP6-mz163
Text S8	Detailed info about TP7-mz186
Text S9	Detailed info about TP8-mz148
Text S10	Detailed info about TP9-mz169
Text S11	Detailed info about TP10-mz173
Text S12	Detailed info about TP11-mz206 and TP12mz206
Text S13	Detailed info about TP13-mz344
Text S14	Detailed info about TP14-mz170
Text S15	Detailed info about GIP1
Text S16	Detailed info about GIP2
Text S17	Detailed info about GIP3
Text S18	Detailed info about GIP4
Text S19	Detailed info about GIP5
Figure S6	Peak intensity of GIP2
Text S20	Detailed info about GIP6

Figure S1. Wavelength intensity distribution for the lamps mimicking sunlight (blue) and actual sunlight (orange). The actual intensities per wavelength are not comparable, since a filter was used to prevent peak overload

Figure S2

Figure S2. Workflow for non-target data analysis. Workflow-steps are underlined and accompanying software packages are displayed in bold (Wagner et al., 2019a).

Text S1 – The full R-script for data-processing of the non-target screening data for positive ionization

```
## Script automatically generated on Wed May 15 12:16:32 2019
library(patRoon)
# -----# initialization# -----
workPath <- "D:/maXis/Projects/Thomas/Non-target - 15-5/pos"</pre>
setwd (workPath)
# Load analysis table
anaInfo <- read.csv("analyses.csv", stringsAsFactors = FALSE, colClasses =
"character")
# Subset for proper calibration
anaInfo manCal <- anaInfo[1:24,]</pre>
anaInfo autoCal <- anaInfo[25:72,]</pre>
# Set to FALSE to skip data pre-treatment
doDataPretreatment <- TRUE
if (doDataPretreatment)
{
   setDAMethod(anaInfo_autoCal, "D:/maXis/Projects/Thomas/Non-target - 15-
5/pos/20190515-pos.m")
    recalibrarateDAFiles (anaInfo autoCal)
    convertMSFiles(anaInfo = anaInfo,
                  to = "mzML", algorithm = "bruker", centroid = TRUE)
}
# -----# features# -----
# Find all features.
# NOTE: see manual for many more options
fList <- findFeatures(anaInfo, "openms")</pre>
# Group and align features between analysis
fGroups <- groupFeatures(fList, "openms")</pre>
# Basic rule based filtering
fGroups <- filter(fGroups, preAbsMinIntensity = 100, absMinIntensity = 5000,
                 relMinReplicateAbundance = 1, maxReplicateIntRSD = 0.75,
                 blankThreshold = 5, removeBlanks = TRUE,
                 retentionRange = c(120, Inf), mzRange = NULL)
# ------ # annotation# -----
# Retrieve MS peak lists
avgPListParams <- getDefAvgPListParams(clusterMzWindow = 0.002)
plists <- generateMSPeakLists(fGroups, "mzr", maxMSRtWindow = 5, precursorMzWindow</pre>
= 4,
                             avgFeatParams = avgPListParams, avgFGroupParams =
avgPListParams)
# uncomment and configure for extra filtering of MS peak lists
# plists <- filter(plists, absMSIntThr = NULL, absMSMSIntThr = NULL, relMSIntThr =</pre>
NULL,
```

```
#
                   relMSMSIntThr = NULL, topMSPeaks = NULL, topMSMSPeaks = NULL,
#
                   delsotopeMS = FALSE, delsotopeMSMS = FALSE)
# Calculate formula candidates
formulas <- generateFormulas(fGroups, "genform", plists, relMzDev = 5,</pre>
                             adduct = "[M+H]+", elements = "CHNOPBr",
                             calculateFeatures = TRUE, featThreshold = 0.75)
# Find compound structure candidates
compounds <- generateCompounds (fGroups, plists, "metfrag", method = "CL",
dbRelMzDev = 5,
                               fragRelMzDev = 5, fragAbsMzDev = 0.002,
                               adduct = "[M+H]+", database = "pubchem",
maxCandidatesToStop = 2500,
                               extraOpts = list(FilterExcludedElements = c("I",
"Si", "B")))
compounds <- addFormulaScoring(compounds, formulas, TRUE)</pre>
# Perform automatic generation of components
components <- generateComponents(fGroups, "ramclustr", ionization = "positive")</pre>
# -----# reporting# -----
reportCSV(fGroups, path = "report", reportFeatures = FALSE, formulas = formulas,
          compounds = compounds, compoundsNormalizeScores = "max",
          components = components)
reportPDF(fGroups, path = "report", reportFGroups = TRUE, formulas = formulas,
reportFormulaSpectra = TRUE,
          compounds = compounds, compoundsNormalizeScores = "max",
          components = components, MSPeakLists = plists)
reportMD(fGroups, path = "report", reportPlots = c("chord", "venn", "upset",
"eics", "formulas"), formulas = formulas,
         compounds = compounds, compoundsNormalizeScores = "max",
         components = components, MSPeakLists = plists,
         selfContained = FALSE, openReport = TRUE)
```


Figure S3. The mobility of Daphnia magna in the presence of different concentrations of $K_2Cr_2O_7$ (purple circles), corresponding model fit (black lines) and LC_{50} (+ 95% confidence interval) (yellow circle).

Table S1.

Table S1. Chemical parameters of test solutions of DBNPA used for the determination of the $\rm EC_{50}$ for Daphnia magna in cooling tower water and ADaM medium

DBNPA	Cooling tower water			ADaM medium		
concentration						
(mg/L)	рН	Temp (°C)	DO (mg/L)	рН	Temp (°C)	DO (mg/L)
0	6.6	20.4	8.94	6.2	20.5	8.94
0.25	6.9	20.4	8.96	6.2	20.5	8.89
0.5	6.7	20.4	8.89	6.2	20.5	8.91
1	6.7	20.5	8.91	6.2	20.5	8.92
2.5	6.9	20.5	8.87	6.2	20.5	8.83
5	6.9	20.5	8.89	6.3	20.5	8.81

Table S2

Table S2. Chemical parameters of test solutions from photodegradation experiments used for Daphnia magna toxicity test.

	pH day 1	pH day 3	pH day 5	T (°C) day 1	T (°C) day 3	T (°C) day 5	DO (mg/L) day 1	DO (mg/L) day 3	DO (mg/L) day 5
CTW-L	7.9	7.9	8.0	19.8	20.5	20.3	8.6	8.6	9.1
CTW-D	7.9	8.0	8.0	19.8	20.2	20.3	8.4	8.6	9.1
DBNPA-L	7.9	8.0	8.0	19.7	20.3	19.9	8.4	8.5	9.0
DBNPA-D	8.0	8.0	8.0	19.9	20.4	20.2	8.7	8.7	8.7
Gluta-L	8.0	8.0	8.0	20.1	20.1	20.0	8.4	8.7	8.7
Gluta-D	8.0	8.1	8.1	20.1	20.3	20.2	8.0	8.7	8.6
G_D-L	7.9	8.0	8.0	20.3	19.9	20.4	8.5	8.7	8.8
G_D-D	7.9	8.1	8.0	20.4	19.9	20.5	8.3	8.7	8.7

Text S2 – Detailed info about TP1-MBNPA

Name:	2-bromo-2-cyanoacetamide (MBNPA)
Origin:	Direct transformation product of DBNPA
Formula:	$C_3H_3BrN_2O$
m/z:	162.95001 (+); 160.9338 (-)
Smiles:	C(#N)C(C(=O)N)Br
Confidence level:	1
Molecular structure:	

N 'n-H H Br

Reasoning: Confirmation with reference standard

Text S3 – Detailed info about TP2-dibromopropanediamide

Name:	2,2-dibromopropanediamide
Origin:	Direct transformation product of DBNPA
Formula:	$C_3H_4Br_2N_2O_2$
m/z:	258.8714 (+)
Smiles:	C(=O)(C(C(=O)N)(Br)Br)N
Confidence level:	1
Molecular structure:	

Reasoning: Confirmation with reference standard

Figure S4. Peak intensities of DBNPA transformation products at t = 1 in the dark.

Figure S5. Degradation pathways of DBNPA in the dark.

Text S4 – Detailed info about TP3-dibromoacetamide

Name:	2,2-dibromoacetamide
Origin:	Direct transformation product of DBNPA
Formula:	C ₂ H ₃ Br ₂ NO
m/z:	215.86482 (+); 213.85049 (-)
Smiles:	C(=O)(C(C(=O)N)(Br)Br)N
Confidence level:	1

Molecular structure:

Reasoning:

Confirmation with reference standard

Text S5. Detailed info about TP4-mz461

Name:	-
Origin:	Direct transformation product of DBNPA
Formula:	C ₁₉ H ₃₇ N ₇ O ₆
m/z:	460.5483 (+)
Smiles:	-
Confidence level:	4
Molecular structure:	

No molecular structure was proposed

-

Reasoning:

Text S6. Detailed info about TP5-mz151	
--	--

Name:	-
Origin:	Photodegradation product of DBNPA
Formula:	$C_2N_7O_2$
m/z:	153.0043 (-)
Smiles:	-
Confidence level:	4
Molecular structure:	

-

Reasoning:

Name:	-
Origin:	Photodegradation product of DBNPA
Formula:	$C_2HBrN_2O_2$
m/z:	162.9137 (-)
Smiles:	-
Confidence level:	4
Molecular structure:	

-

Reasoning:

Text S8.	Detailed info about TP7-mz186
Name:	-
Origin:	Photodegradation product of DBNPA
Formula:	C ₈ H ₅ N ₅ O
m/z:	186.0409 (-)
Smiles:	-
Confidence lev	r el: 4
Molecular stru	cture:

-

Reasoning:

Text S9.	Detailed info about TP8-mz148
Name:	-
Origin:	Photodegradation product of DBNPA
Formula:	148.0146 (-)
m/z:	$C_6H_3N_3O_2$
Smiles:	-
Confidence lev	el: 4
Molecular stru	cture:

-

Reasoning:

Text S10.	Detailed info about TP9-mz169

Name:	-
Origin:	Photodegradation product of DBNPA
Formula:	169.0139 (-)
m/z:	C ₇ H ₆ O ₅
Smiles:	-
Confidence level:	4
Molecular structure:	

-

Reasoning:

Text S11.	Detailed	info about	TP10-mz173

Name:	-
Origin:	Photodegradation product of DBNPA
Formula:	$C_{10}H_6O_3$
m/z:	173.0239 (-)
Smiles:	-
Confidence level:	4
Molecular structure:	

-

Reasoning:

Text S12.	Detailed info about TP11-mz206 and TP12mz206	
Name:	-	
Origin:	Photodegradation product of DBNPA	
Formula:	$C_8H_8N_5O_2$	
m/z:	206.0666 (+)	
Smiles:	-	
Confidence leve	el: 4	
Molecular strue	cture:	

-

Reasoning:

Text S13. Detailed info about TP13-mz344

Name:	-
Origin:	Photodegradation product of DBNPA
Formula:	$C_{12}H_{21}N_7O_5$
m/z:	344.1688 (+)
Smiles:	-
Confidence level:	5
Molecular structure:	

No molecular structure was proposed

Reasoning: -

MS/MS:

No MS/MS was available

Text S14.	Detailed info about TP14-mz170
Name:	-
Origin:	Photodegradation product of DBNPA
Formula:	$C_6H_7N_3O_3$
m/z:	170.0559 (+) ; 168.0411 (-)
Smiles:	-
Confidence lev	r el: 4
Molecular stru	cture:

-

Reasoning:

Text S15.	Detailed info about GIP1
Name:	-
Origin:	Interaction product between DBNPA and glutaraldehyde
Formula:	C ₆ H ₉ NO ₂
m/z:	128.07079 (+)
Smiles:	-
Confidence level:	5
Molecular structure	:

-

Reasoning:

Text S16.	Detailed info about GIP2
Name:	-
Origin:	Interaction product between DBNPA and glutaraldehyde
Formula:	$C_8H_{10}N_2O_3$
m/z:	181.06119 (-), 183.07633 (+)
Smiles:	-
Confidence level:	3
Molecular structure:	

Reasoning: Molecular formula; knowledge on parent compounds formula and structure; knowledge on parent compound's chemical behaviour. Wagner et al. 2019b

Text S17.	Detailed info about GIP3
Name:	-
Origin:	Interaction product between DBNPA and glutaraldehyde
Formula:	$C_8H_{12}N_2O_3$
m/z:	183.07678 (-), 185.09193 (+)
Smiles:	-
Confidence level:	5
Molecular structure:	

Reasoning:

Text S18.	Detailed info about GIP4
Name:	-
Origin:	Interaction product between DBNPA and glutaraldehyde
Formula:	$C_{11}H_{12}N_4O_4$
m/z:	263.0777 (-), 265.0931 (+)
Smiles:	-
Confidence level:	3
Molecular structure	:

Reasoning:Molecular formula; knowledge on parent compounds formula and structure;
knowledge on parent compound's chemical behaviour

Text S19.	Detailed info about GIP5
Name:	-
Origin:	Interaction product between DBNPA and glutaraldehyde
Formula:	$C_{17}H_{30}N_4O_6$
m/z:	385.20753 (-)
Smiles:	-
Confidence level:	5
Molecular structure:	

-

Reasoning:

Figure S6. Peak intensity of GIP2 (fragment m/z 183.07633) in this study and in Wagner et al. (2019b)

Text S20.	Detailed info about GIP6
Name:	-
Origin:	Interaction product between DBNPA and glutaraldehyde
Formula:	$C_{11}H_{11}N_3O_5$
m/z:	264.06206 (-)
Smiles:	-
Confidence level:	5
Molecular structure:	

Reasoning:

