Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2019

Asymmetric configuration of pseudocapacitive composite electrodes for enhanced capacitive deionization

Hammad Younes^a and Linda Zou ^{a*}

a. Department of Civil Infrastructure and Environment Engineering, Masdar Institute, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates. P O Box 127788, Abu Dhabi, UAE, T +971 2 810 9304, F +971 2 810 9901

Figure S1 Water contact angle images of A: MFO-rGO; B: MnO₂-rGO

Figure S2 TEM images A: TEM images for MFO-rGO nanocomposite and B: TEM image for MnO_2 -rGO nanocomposite

Figure S3 Raman spectra for GO and rGO

Figure S4 Performance tradeoff relationships for different electrode pairs: MFO-rGO / rGO; MnO₂-rGO / rGO; and MFO-rGO / MnO₂-rGO. With no energy recovery. The separation conditions are identical for every data point: $\langle \Delta c \rangle = 12.5 \text{ mg/L}$, $c_{\text{feed}} = 50 \text{ mg/L}$, WR = 50 %.