Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2020

Supporting Information: "Capacitive Deionization for Selective Removal of

Nitrate and Perchlorate: Impacts of Ion Selectivity and Operating Constraints on

Treatment Costs"

Steven Hand and Roland D. Cusick*

Department of Civil and Environmental Engineering University of Illinois at Urbana-Champaign, Urbana, IL 61801-2352

Pages: 7

Figures: 3

Tables: 1

Section 1 – Supplemental Figures and Tables

Figure S1: Individual run outputs for common metrics E_v vs P of CDI (gray, A) and MCDI (blue, B) systems as simulated across varying water recovery (square), cell voltage (triangles), and concentration reduction (circle) as detailed in Section 3.1.

Figure S2: Operating cost as a percentage of total system cost for CDI and MCDI with increasing water recovery. The influent target ion (c_0) is fixed at 10 meq L⁻¹, removal fraction is 50%, cell voltage is 0.6 V, and ion selectivity is one. As water recovery increases beyond 0.85, operating costs exponentially increase as percent of total system costs.

Figure S3. Median water price for MCDI system (blue) as a function of system lifetime. The influent target ion (c_0) is fixed at 10 meq L⁻¹, target ion removal is 50%, the water recovery is 0.85, cell voltage limit is 0.6 V, and ion selectivity is one. Median CDI performance under identical conditions shown at 6,000 (black) and 24,000 (grey) cycle lifetimes.

Input	Value	Unit				
Voltage Limit	0.6	V				
Total Cycle Time	1200	S				
Electrode Area	100	cm ²				
Area-normalized equivalent series resistance	90	$\Omega \ cm^2$				
Flow	200	L s⁻¹				
Specific Capacitance	50	F g⁻¹				
Current Density	5	A/m ⁻²				
CDI Charge Efficiency	0.4					
Water Recovery	0.85					
Decatur						
Flow	880	L s ⁻¹				
Influent Concentration	2.72 meq L ^{-*}					
Israel						
Flow	13.3	L s ⁻¹				
Influent Concentration	6.35	meq L ⁻¹				
Spain						
Flow	206	L s ⁻¹				
Influent Concentration	12.73	meq L ⁻¹				

 Table S1: Input parameters for NO₃⁻-selective CDI case studies.

Section 2 – System sizing and costing equations.

$$V_m = Ri_c + \frac{i_c t_c}{C} \tag{1}$$

$$R = R_s + R_{ct} + R_i \tag{2}$$

$$t_c = tWR \tag{3}$$

$$N = \frac{(c_{in} - c_{out})QF}{i_c \eta_c \eta_f} \tag{4}$$

$$Q = \frac{Q_p}{WR} \tag{5}$$

$$\eta_f = \frac{2\tau_c}{t_c} \ln\left(\frac{e^{\frac{t_c}{\tau_c}} + 1}{2}\right) - 1 \tag{6}$$

$$\tau_c = \frac{V_{eff}}{Q} \tag{7}$$

$$m = \frac{t_c N}{C_g \left(\frac{V_m}{i_c} - R\right)} \tag{8}$$

$$\delta_e = \frac{m}{2\rho_e AN} \tag{9}$$

$$E_{c} = \frac{1}{2} (V_{m} + Ri_{c}) t_{c} i_{c} N$$
(10)

$$t_d = t(1 - WR) \tag{11}$$

$$i_d = \frac{i_c t_c}{t_d} \tag{12}$$

$$E_{d} = -\frac{1}{2}(V_{m} - Ri_{d})t_{d}i_{d}N$$
(13)

$$P_{cap} = mC_c + m_bC_b + m_{ad}C_{ad} + A \left[N_mC_f + N(2C_{IEM} + C_s) + (N+1)C_{cc} \right] + WC_{bop}$$
(14)

$$P_{op} = (E_c + \eta_R E_d) C_e \omega + P_{lab}$$
⁽¹⁵⁾

List of Symbols:

A	electrode area, cm ⁻²	Pcap	capital cost, \$
С	capacitance, F	P _{lab}	annual labor cost, \$ yr ⁻¹
C_{ad}	cost of cond. additive, \$ kg ⁻¹	P_{op}	annual operating cost, \$ yr-1
C_b	cost of binder, \$ kg ⁻¹	Q	total treatment flow, L s ⁻¹
C_{bop}	balance-of-plant costs, \$ kW ⁻¹	Q_p	fixed production rate, L s ⁻¹
C _c	cost of carbon, \$ kg ⁻¹	R	total resistance, Ω
C_{cc}	cost of current collector, \$ m ⁻²	R _{ct}	contact resistance, Ω
C _e	cost of electricity, \$ kWh ⁻²	R _i	ionic resistance, Ω
C_f	cost of housings/frames, \$ m ⁻²	R_s	setup resistance, Ω
C_g	specific capacitance, F g ⁻¹	t	total cycle duration, s
C_{IEM}	cost of IEMs, \$ m ⁻²	t _c	charging duration, s
C _{in}	influent concentration, meq L-1	t _d	discharging duration, s
C _{out}	effluent concentration, meq L ⁻¹	V_{eff}	effective cell volume, L
C_s	cost of separator, \$ m ⁻²	V_m	voltage limit, V
E_c	charging input energy, J	W	peak power consumption, W
E_d	discharge. recoverable energy, J	WR	water recovery
F	Faraday constant	δ_e	electrode thickness, µm
i _c	charging current density, A m ⁻²	η_C	effective charge efficiency
i _d	discharging current density, A m ⁻²	η_f	flow efficiency
т	mass of active material, kg	η_R	round-trip efficiency
m_{ad}	mass of conductivity additive, kg	$ ho_e$	electrode density, g cm ⁻³
m_b	mass of binder, kg	$ au_c$	cell residence time, s
Ν	total number of cell pairs	ω	cycles per year, yr ⁻¹
N _m	number of cell pairs per stack		