Electronic Supplementary Information

Investigation of titanium mesh as a cathode for the electro-Fenton process: consideration of the practical application in wastewater treatment

Jiho Lee,^{a,†} Aseom Son,^{a,d,†} Young-Jin Ko,^b Min-Jung Shin,^a Woong Sub Kim,^a Jae-Woo Choi,^{a,c} Jaesang Lee,^d and Seok Won Hong,^{a,c*}

- ^a Water Cycle Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- ^b Center for Electronic Materials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- ^c Division of Energy and Environment Technology, KIST school, Korea University of Science and Technology, Seoul 02792, Republic of Korea
- ^d Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea
- † These authors contributed equally.
- * Corresponding Author.
- E-mail address: swhong@kist.re.kr (S.W. Hong)

(a) Plate

(c) MS-S

Fig. S1 Macro photographs and SEM images of commercial Ti electrodes with different morphologies: (a) plate, (b) mesh with large opening size (MS-L), and (c) mesh with small opening size (MS-S).

Fig. S2 Cyclic voltammogram of (a) plate, (b) MS-L, and (c) MS-S in 0.01 M K₄Fe(CN)₆ and 100 mM KCl supporting electrolyte. (d) Cathodic peak currents were plotted with respect to the square root of the scan rate. The absolute gradients of the cathodic peak currents and scan rates are 0.0428, 0.0628 and 0.0758 A V^{-0.5} s^{0.5}, respectively, for plate, MS-L and MS-S electrodes.

Electrochemically active surface area (ECSA) is calculated based on the Randles-Sevcik equation as follows:

$$i_{\text{peak}} = 0.4463 \times \sqrt{\frac{n^{3}F^{3}}{RT}} \times \sqrt{D} \times C_{0} \times A \times \sqrt{V_{rate}} ,$$

where *n* is the number of electrons involved in the reaction, *D* is the average diffusion coefficient of K₄(FeCN)₆ with a value of $6.56 \times 10^{-6} \text{ cm}^2/\text{s}$, 1C_0 is the initial concentration, V_{rate} is the scan rate, *F* is the Faraday constant, *A* is the geometric area of the electrode, *R* is gas constant, and *T* is the temperature.

Fig. S3 Current profiles with respect to change in the Fe^{2+} concentration

Fig. S4 Change in COD removal efficiency of the Fenton and electro-Fenton processes with respect to injected concentration ratio of Fe^{2+} and H_2O_2 .

Fig. S5 Color and COD changes of real wastewater treated with the Fenton or electro-Fenton processes.

 Table S1. Summary of operating conditions and energy consumption of electro-Fenton

 processes using different cathode materials.

Electro-Fenton system (cathode material)	Target compound	Operating conditions	Energy consumption	Reference
Titanium mesh electrode with large opening size	Real wastewater	Average cell voltage: 2.0 V	1.56 kWh/kg COD	This study
Carbon	Textile dye	Average cell voltage: 3.5 V	Not available	[2]
Stainless steel	Antimicrobials triclosan and triclocarban	Average cell voltage: 5.7 V	Not available	[3]
Graphite felt	methylene blue	Constant current: 50 mA (voltage not shown)	23 kWh/kg TOC	[4]
Nitrogen-doped graphene-carbon nanotube	dimethyl phthalate	Cathodic potential: -0.5 V vs. SCE	3.37 kWh/kg COD	[5]
Carbon (CMK-3) gas diffusion electrode	dimethyl phthalate	Cathodic potential: -0.5 V vs. SCE	538.9 kWh/kg COD	[6]
Graphite felt	Organic pollutants in RO concentrate	Cathodic potential: -0.72 V vs. SCE	60 kWh/kg COD	[7]
Graphite felt	Textile wastewater	Constant current: 300 mA (voltage not shown)	63.64 kWh/kg COD	[8]
Iron	Textile wastewater	Constant current: 200 mA (voltage not shown)	3.38 kWh/kg COD	[8]

Fig. S6 Schematics and photographs of (a, c) pilot-scale electro-Fenton and corresponding (b, d) electrode stacks.

The electrode stacks were constructed by alternate stacking of twenty one titanium electrodes with large mesh size and twenty iridium oxide and ruthenium oxide coated titanium meshes as cathodes and anodes, respectively. The electrical cables were connected in parallel and ~ 2 V was applied to each pair of the electrodes.

Calculation of the cost in pilot scale electro-Fenton operation

Based on the representative result during the pilot experiment

(1) Amount of COD removed:

COD removed = Influent COD – Effluent COD \rightarrow 1610 mg/L – 105 mg/L = 1505 mg/L

Volume of the reactor: 3130 L

Amount of COD removed: $1505 \text{ mg/L} \times 3130 \text{ L} \times 1 \text{ mg/10}^6 \text{ kg} = 4.71 \text{ kg} \text{ COD removed}$

(2) Cost of Reagents (based on the purchased price)

253 mg/L Fe²⁺ and 159 mg/L H₂O₂ were injected.

Amount of FeSO₄·7H₂O injected:

 $\frac{0.253 \text{ g Fe}}{\text{L}} \times \frac{\text{mol}}{55.945 \text{ g Fe}} \times \frac{277.8 \text{ g FeSO}_4 \cdot 7\text{H}_2\text{O}}{\text{mol}} \times \frac{\text{kg}}{1000 \text{ g}} \times 3130 \text{ L} = 3.93 \text{ kg FeSO}_4 \cdot 7\text{H}_2\text{O}$

Amount of H₂O₂ injected:

 $\frac{0.159 \text{ g H}_2\text{O}_2}{\text{L}} \times \frac{\text{kg}}{1000 \text{ g}} \times 3130 \text{ L} = 0.49 \text{ kg H}_2\text{O}_2$

FeSO₄·7H₂O cost: 2.58 $/kg \times 3.93$ kg FeSO₄·7H₂O injected = 10.1

 H_2O_2 cost: 3.18 \$/kg × 0.49 kg H_2O_2 injected = 1.56 \$

(3) Electricity cost (based on the unit provided by the Korea Electric Power Corporation)

Energy consumption: voltage × current × time $\rightarrow 2 \text{ V} \times 13 \text{ A} \times 3 \text{ h} = 78 \text{ Wh} = 0.078 \text{ kWh}$ $\rightarrow 0.07 \text{ kWh} \times 0.078 \text{ kWh} = 0.005 \text{ s}$

(4) Total cost:

 $FeSO_4 \cdot 7H_2O \cos t + H_2O_2 \cos t + electricity \cos t = total \cos t$

10.1 + 0.54 + 0.005 = 10.645 \$

Total cost per kg COD removed: 10.645 \$ / 4.71 kg COD = 2.48 \$/kg COD

References

- 1. S. Konopka and B. McDuffie, Diffusion coefficients of ferri-and ferrocyanide ions inaqueous media, using twin-electrode thin-layer electrochemistry, *Analytical Chemistry*, 1970, **42**, 1741-1746.
- 2. E. Petrucci, A. Da Pozzo and L. Di Palma, On the ability to electrogenerate hydrogen peroxide and to regenerate ferrous ions of three selected carbon-based cathodes for electro-Fenton processes, *Chemical Engineering Journal*, 2016, **283**, 750-758.
- I. Sires, N. Oturan, M. A. Oturan, R. M. Rodríguez, J. A. Garrido and E. Brillas, Electro-Fenton degradation of antimicrobials triclosan and triclocarban, *Electrochimica Acta*, 2007, 52, 5493-5503.
- 4. M. M. Ghoneim, H. S. El-Desoky and N. M. Zidan, Electro-Fenton oxidation of Sunset Yellow FCF azo-dye in aqueous solutions, *Desalination*, 2011, **274**, 22-30.
- 5. T. Liu, K. Wang, S. Song, A. Brouzgou, P. Tsiakaras and Y. Wang, New electro-Fenton gas diffusion cathode based on nitrogen-doped graphene@ carbon nanotube composite materials, *Electrochimica Acta*, 2016, **194**, 228-238.
- 6. Y. Wang, Y. Liu, X.-z. Li, F. Zeng and H. Liu, A highly-ordered porous carbon material based cathode for energy-efficient electro-Fenton process, *Separation and Purification Technology*, 2013, **106**, 32-37.
- M. Zhou, Q. Tan, Q. Wang, Y. Jiao, N. Oturan and M. A. Oturan, Degradation of organics in reverse osmosis concentrate by electro-Fenton process, *Journal of hazardous materials*, 2012, 215, 287-293.
- 8. F. Ghanbari and M. Moradi, A comparative study of electrocoagulation, electrochemical Fenton, electro-Fenton and peroxi-coagulation for decolorization of real textile wastewater: electrical energy consumption and biodegradability improvement, *Journal of Environmental Chemical Engineering*, 2015, **3**, 499-506.