Supplementary Information for the article

Diruthenium Complexes Having a Partially Hydrogenated Bipyridine Ligand: Plausible Mechanism for the Dehydrogenative Coupling of Pyridines at a Diruthenium Site

Toshiro Takao,* Takashi Kawashima, Ryo Nagae, Hideyuki Kanda, and Wataru Watanabe Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan

Contents

1.	Crystal data and results of XRD studies	
	Crystallographic Data for 4a, 5c, 6b, 7a, and 8.	S 2
	(a) Molecular structure of 4a and relevant structural parameters	S 4
	(b) Molecular structure of $5c$ and relevant structural parameters	S 4
	(c) Molecular structure of 6b and relevant structural parameters	S 5
	(d) Molecular structure of $7a$ and relevant structural parameters	S 5
	(e) Molecular structure of 8 and relevant structural parameters	S6
2.	Spectral data of the compounds	
	(a) $\{Cp*Ru(\mu-4-MeC_5H_3N)(\mu-H)\}_2$ (2a)	S 7
	(b) $(Cp^{*}Ru)_{2}{\mu-\eta^{2}-4,4'-Me_{2}dhbpy}(\mu-H)(H)$ (4a)	S 8
	(c) $(Cp*Ru)_{2}{\mu-\eta^{4}-4,4'-Me_{2}dhbpy}$ (5a)	S10
	(d) $(Cp^*Ru)_2{\mu-\eta^4-4,4'-(CF_3)_2dhbpy}$ (5b)	S12
	(e) $(Cp*Ru)_{2}{\mu-\eta^{4}-4,4'-(COOEt)_{2}dhbpy}$ (5c)	S15
	(f) $(Cp*Ru)_{2}{\mu-\eta^{2}-4,4'-(CF_{3})_{2}dhbpy}(\mu-H)(H)$ (4b)	S17
	(g) $(Cp^{*}Ru)_{2}{\mu-\eta^{2}-4,4'-(CF_{3})_{2}dhbpy}(\mu-H)(H)$ (4c)	S18
	(h) $(Cp^{*}Ru)_{2}(\mu-\eta^{4}-4,4'-Me_{2}dhbpy)('BuNC)$ (6a)	S19
	(i) $(Cp*Ru)_{2}{\mu-\eta^{4}-4,4'-(CF_{3})_{2}dhbpy}('BuNC)$ (6b)	S21
	(j) $(Cp*Ru)_2(\mu-\eta^4-4,4'-Me_2bpy)$ (7a)	S23
	(k) $(Cp^{*}Ru)_{2}{\mu-\eta^{4}-4,4'-(CF_{3})_{2}bpy}$ (7b)	S26
	(l) $(Cp*Ru)_2(\mu-\eta^2-phen)(\mu-H)(H)$ (8)	S27

3. Preliminary result of an X-ray diffraction study for **5a** S31

1. Crystal data and results of XRD studies

	4 a	5c	6b
(a) Crystal Data			
Empirical Formula	C32 H46 N2 Ru2	C36 H48 N2 O4 Ru2	C37 H47 F6 N3 Ru2
Formula Weight	660.85	774.90	849.91
Crystal Description	Block	Prism	Block
Crystal Color	Red	Brown	Brown
Crystal size (mm)	$0.12 \times 0.08 \times 0.06$	$0.31 \times 0.28 \times 0.22$	$0.38 \times 0.31 \times 0.26$
Crystallizing Solution	Diethylether	Pentane	Hexane
	(2 °C)	$(-20 ^{\circ}\mathrm{C})$	$(-30 ^{\circ}\mathrm{C})$
Crystal System	Monoclinic	Orthorhombic	Triclinic
Space Group	$C^{2/c}$ (#15)	Pnma (#62)	$P_{-1}(#2)$
$a(\mathbf{A})$	19 7520(6)	16.0588(4)	103925(4)
$h(\dot{\Lambda})$	8 49780(19)	10.0000(4) 19.8061(4)	10.3923(4) 11.2250(5)
$c(\mathbf{\hat{A}})$	34 8959(7)	10.6735(2)	17 5502(8)
α (°)	54.8757(7)	10.0735(2)	86 627(2)
$\mathcal{B}(\circ)$	101 3836(8)		86.027(2)
μ (°)	101.5650(6)		63 0100(10)
γ () V (Å3)	5742 0(2)	2204 84(12)	1824 17(14)
V (A')	9742.0(2) 9	3394.04(12)	1654.17(14)
Z value $D = (g / gm^3)$	o 1.520	4	2 1 530
<i>D_{calc}</i> (g / cm ²)	1.529	1.510	1.339
Weasurement Temp (C)	-150	-130	-120
$\mu(MORG)$ (mm)	1.075	0.950	0.884
(b) Intensity Measurements			
Diffractometer	RAXIS-RAPID	RAXIS-RAPID	RAXIS-RAPID
Radiation	ΜοΚα	ΜοΚα	ΜοΚα
Monochromator	Graphite	Graphite	Graphite
$2\theta \max$	60 °	55 °	55°
Reflections Collected	31904	31156	18139
Independent reflections	8193	3969	8290
	$(R_{\rm int} = 0.0290)$	$(R_{\rm int} = 0.0222)$	$(R_{\rm int} = 0.0367)$
Reflections Observed ($> 2\sigma$)	7393	3752	7400
Abs. Correction type	Empirical	Empirical	Empirical
Abs. Transmission	0.8708 (min.)	0.8109 (min.),	0.6945 (min.),
	1.0000 (max.)	1.0000 (max.)	1.0000 (max.)
(c) Refinement (SHELXL-2016/6)			
$R_1 (I > 2\sigma(I))$	0.0224	0.0228	0.0312
$wR_2 (I > 2\sigma(I))$	0.0486	0.0581	0.0779
R_1 (all data)	0.0268	0.0242	0.0356
wR_2 (all data)	0.0504	0.0589	0.0810
Data/Restraints/Parameters	8193 / 0 / 378	3969 / 0 / 246	8290 / 0 / 478
GOF	1.064	1.080	1.026
Largest diff. peak and hole (e.Å $^{-3}$)	0.837 and -0.631	1.234 and -0.703	1.096 and -0.374

Table S1. Crystallographic Data for 4a, 5c, 6b, 7a, and 8.

	7a	8
(a) Crystal Data		
Empirical Formula	C32 H42 N2 Ru2	C32 H40 N2 Ru2
Formula Weight	656.81	654.80
Crystal Description	Platelet	Platelet
Crystal Color	brown	black
Crystal size (mm)	$0.15 \times 0.15 \times 0.03$	$0.10 \times 0.05 \times 0.02$
Crystallizing Solution	Hexane	Hexane
	(-30 °C)	(-30 °C)
Crystal System	Monoclinic	Triclinic
Space Group	<i>C</i> 2/c (#15)	P-1 (#2)
а (<u>Ц</u>)	21.875(3)	10.8926(9)
<i>b</i> (∐)	17.503(2)	16.1224(14)
с (Ц)	16.448(2)	16.4294(12)
α (°)		89.244(2)
β (°)	112.870(8)	78.917(2)
γ (°)		77.643(2)
V (Å ³)	5802.3(13)	2764.7(4)
Z value	8	4
D_{calc} (g / cm ³)	1.504	1.573
Measurement Temp (°C)	-150	-100
$\mu(MoK\alpha) (mm^{-1})$	1.063	1.116
(b) Intensity Measurements		
Diffractometer	RAXIS-RAPID	RAXIS-RAPID
Radiation	ΜοΚα	ΜοΚα
Monochromator	Graphite	Graphite
$2\theta \max$	55°	50°
Reflections Collected	26900	24144
Independent reflections	6557	10046
	$(R_{\rm int} = 0.1264)$	$(R_{\rm int} = 0.1091)$
Reflections Observed ($> 2\sigma$)	3670	6214
Abs. Correction type	Numerical	Empirical
Abs. Transmission	0.8647 (min.),	0.5300 (min.),
	0.9402 (max.)	1.0000 (max.)
(c) Refinement (SHELXL-2016/6)		
$R_1 (I > 2\sigma(I))$	0.0537	0.0821
$wR_2 (I > 2\sigma(I))$	0.1018	0.1807
R_1 (all data)	0.1146	0.1312
wR_2 (all data)	0.1230	0.2146
Data/Restraints/Parameters	6557 / 0 / 337	10046 / 0 / 794
GOF	0.956	0.967
Largest diff. peak and hole (e.Å ⁻³)	1.070 and -0.888	1.523 and -2.360
CCDC deposition number	1001045	1001046

 Table S1.
 Crystallographic Data for 4a, 5c, 6b, 7a, and 8 (continued).

(a) $(Cp*Ru)_2{\mu-\eta^2-4,4'-Me_2dhbpy}(\mu-H)(H)$ (4a)

Figure S1. Molecular structure and labelling scheme of **4a** with thermal ellipsoids at a 40% probability. Selected bond lengths (Å) and angles (deg): Ru(1)–Ru(2) 2.89518(17), Ru(1)–N(1) 2.0552(13), Ru(1)–N(2) 2.1048(13), Ru(2)–N(1) 2.0934(13), Ru(2)–C(1) 2.1764(15), C(1)–C(2) 1.472(2), C(1)–C(7) 1.472(2), C(1)–N(1) 1.4168(19), C(2)–C(3) 1.338(2), C(3)–C(4) 1.496(2), C(4)–C(5) 1.509(2), C(5)–N(1) 1.463(2), C(7)–C(8) 1.404(2), C(7)–N(2) 1.363(2), C(8)–C(9) 1.384(2), C(9)–C(10) 1.401(3), C(10)–C(11) 1.378(2), C(11)–N(2) 1.351(2), N(1)–Ru(1)–N(2) 78.14(5), C(7)–C(1)–N(1) 113.80(13), C(1)–C(7)–N(2) 114.71(13), Ru(1)–N(1)–C(1) 114.13(10), Ru(1)–N(2)–C(7) 115.19(10).

(b) $(Cp*Ru)_{2}{\mu-\eta^{4}-4,4'-(COOEt)_{2}dhbpy}$ (5c)

Figure S2. Molecular structure and labelling scheme of **5c** with thermal ellipsoids at a 30% probability. Selected bond lengths (Å) and angles (deg): Ru(1)–Ru(2) 2.9037(2), Ru(1)–N(1) 2.0584(13), Ru(2)–N(1) 2.2569(14), Ru(2)–C(1) 2.1805(16), C(1)–C(1#) 1.425(3), C(1)–C(2) 1.441(2), C(1)–N(1) 1.405(2), C(2)–C(3) 1.355(2), C(3)–C(4) 1.492(5), C(3)–C(4A) 1.459(4), C(4)–C(5) 1.504(6), C(4A)–C(5A) 1.373(6), C(5)–N(1) 1.468(5), C(5A)–N(1) 1.405(5), N(1)–Ru(1)–N(1A) 75.72(8), C(1#)–C(1)–N(1) 113.09(9), Ru(1)–N(1)–C(1) 118.15(11).

(c) $(Cp*Ru)_{2}{\mu-\eta^{4}-4,4'-(CF_{3})_{2}dhbpy}(^{t}BuNC)$ (6b)

Figure S3. Molecular structure and labelling scheme of **6b** with thermal ellipsoids at a 30% probability. Selected bond lengths (Å) and angles (deg): Ru(1)···Ru(2) 4.126(3), Ru(1)–N(1) 2.1755(18), Ru(1)–N(2) 2.1145(18), Ru(1)–C(13) 1.904(2), Ru(2)–N(1) 2.2833(18), Ru(2)–C(1) 2.113(2), Ru(2)–C(2) 2.120(2), Ru(2)–C(3) 2.178(2), C(1)–N(1) 1.408(3), C(1)–C(2) 1.428(3), C(1)–C(7) 1.454(3), C(2)–C(3) 1.451(3), C(3)–C(4) 1.517(3), C(4)–C(5) 1.520(3), C(5)–N(1) 1.488(3), C(7)–N(2) 1.360(3), C(7)–C(8) 1.405(3), C(8)–C(9) 1.384(3), C(9)–C(10) 1.386(4), C(10)–C(11) 1.379(4), C(11)–N(2) 1.351(3), C(13)–N(3) 1.175(3), C(1)–N(1)–C(5) 112.89(17), C(2)–C(1)–N(1) 116.66(18), C(1)–C(2)–C(3) 113.72(19), C(2)–C(3)–C(4) 120.4(2), C(3)–C(4)–C(5) 108.76(18), C(4)–C(5)–N(1) 112.75(19), Ru(1)–C(13)–N(3) 176.9(2), C(13)–N(3)–C(14) 150.2(2).

(d) $(Cp*Ru)_2(\mu-\eta^4-4,4'-Me2bpy)$ (7a)

Figure S4. Molecular structure and labelling scheme of **7a** with thermal ellipsoids at a 40% probability. Selected bond lengths (Å) and angles (deg): Ru(1)–Ru(2) 2.9042(7), Ru(1)–N(1) 2.066(4), Ru(1)–N(2) 2.077(4), Ru(2)–N(1) 2.260(4), Ru(2)–N(2) 2.285(4), Ru(2)–C(1) 2.211(6), Ru(2)–C(7) 2.201(6), C(1)–C(7) 1.438(7), C(1)–C(2) 1.455(7), C(1)–N(1) 1.424(6), C(2)–C(3) 1.373(8), C(3)–C(4) 1.449(8), C(4)–C(5) 1.344(8), C(5)–N(1) 1.411(7), C(7)–C(8) 1.438(7), C(7)–N(2) 1.420(7), C(8)–C(9) 1.358(7), C(9)–C(10) 1.443(8), C(10)–C(11) 1.356(8), C(11)–N(2) 1.412(7), N(1)–Ru(1)–N(2) 75.35(17), Ru(1)–N(1)–C(1) 119.4(3), Ru(1)–N(2)–C(7) 118.6(3), N(1)–C(1)–C(7) 112.1(5), C(1)–C(7)–N(2) 113.2(4).

(e) $(Cp*Ru)_2(\mu-\eta^2-phen)(\mu-H)(H)$ (8)

Figure S5. Molecular structure and labelling scheme of **8** with thermal ellipsoids at a 30% probability. Selected bond lengths (Å) and angles (deg): Ru(1)–Ru(2) 2.8776(9), Ru(1)–N(1) 2.053(7), Ru(1)–N(2) 2.092(7), Ru(2)–N(1) 2.101(8), Ru(2)–C(5) 2.195(10), C(1)–C(7) 1.440(13), C(1)–C(2) 1.373(14), C(1)–N(1) 1.412(12), C(2)–C(3) 1.439(14), C(3)–C(4) 1.342(16), C(4)–C(5) 1.449(15), C(5)–N(1) 1.413(11), C(7)–C(8) 1.419(13), C(7)–N(2) 1.353(12), C(8)–C(9) 1.395(15), C(9)–C(10) 1.356(16), C(10)–C(11) 1.397(15), C(11)–N(2) 1.351(12), N(1)–Ru(1)–N(2) 77.1(3), Ru(1)–N(1)–C(1) 116.8(6), Ru(1)–N(2)–C(7) 116.0(5), N(1)–C(1)–C(7) 112.7(8), C(1)–C(7)–N(2) 116.2(8).

2. Spectral data of the compounds

(a) $\{Cp*Ru(\mu-4-MeC_5H_3N)(\mu-H)\}_2$ (2a)

¹H NMR (400 MHz, benzene- d_6 , 25 ° C): δ –9.33 (s, 2H, RuH), 1.77 (s, 6H, C⁴Me), 1.89 (s, 15H, Cp^{*}), 2.09 (s, 15H, Cp^{*}), 6.04 (d, J = 5.3 Hz, C⁵H), 6.95 (s, C³H), 8.00 ppm (d, J = 5.3 Hz, C⁶H).

Figure S6. ¹H NMR spectrum of the mixture obtained by the reaction of **1** with γ -picoline at 25 °C; recorded after 5 min (400 MHz, C₆D₆, 25 °C).

(b) $(Cp*Ru)_2{\mu-\eta^2-4,4'-Me_2dhbpy}(\mu-H)(H)$ (4a)

¹H NMR (400 MHz, Benzene- d_6 , 25 ° C): δ –15.30 (d, J = 4.0 Hz, 1H, RuH), –11.56 (d, J = 4.0 Hz, 1H, RuH), 1.6* (m, 1H, C₅ H_2), 1.65 (s, 3H, C⁴Me), 1.77 (s, 15H, C₅ Me_5), 1.83 (s, 3H, C⁴Me), 1.88 (s, 15H, C₅ Me_5), 1.9* (m, 1H, C⁵ H_2), 3.84 (ddd, J = 13.2, 7.0, 3.5 Hz, 1H, C⁶ H_2), 4.52 (ddd, J = 13.2, 10.4, 5.6 Hz, 1H, C⁶ H_2), 5.90 (d, J = 6.0 Hz, 1H, C⁵H), 6.29 (s, 1H, C³H), 6.62 (s, 1H, C³H), 7.92 ppm (d, J = 6.0 Hz, 1H, C⁶ H_2). (* confirmed by H–H COSY). ¹³C NMR

(100 MHz, Benzene- d_6 , 25 ° C): δ 11.4 (q, $J_{CH} = 126$ Hz, C_5Me_5), 12.0 (q, $J_{CH} = 126$ Hz, C_5Me_5), 20.8 (q, $J_{CH} = 127$ Hz, C^7Me), 24.0 (q, $J_{CH} = 126$ Hz, C^3Me), 29.9 (dd, $J_{CH} = 130$, 121 Hz, C^5), 59.3 (dd, $J_{CH} = 138$, 138 Hz, C^6), 62.7 (s, C^2), 79.6 (s, C_5Me_5), 93.9 (s, C_5Me_5), 114.6 (d, $J_{CH} = 159$ Hz, C^9), 117.1 (d, $J_{CH} = 161$ Hz, $C^{5'}$), 122.9 (s, C^4), 123.6 (d, $J_{CH} = 159$ Hz, C^8), 141.4 (s, C^4), 150.4 (d, $J_{CH} = 175$ Hz, $C^{6'}$), 173.4 ppm (s, $C^{2'}$). IR (KBr, cm⁻¹): 2974, 2945, 2893, 2852, 1986 (v(RuH)), 1607, 1540, 1469, 1373, 1300, 1027, 1011, 795.

Figure **S7.** ¹H NMR spectrum of **4a** (400 MHz, C₆D₆, 25 °C).

Table S2. Coupling parameters for the methylene protons at the C^6 position of **4a**.

		δ/ppm	W/Hz	J[1]	J[2]	J[3]
1	C ⁵ H ^a	(1.601)*	1.40			
2	${\rm C}^{5}{\rm H}^{\rm b}$	(1.903)*	1.40	(16.40)		
3	C ⁶ H ^a	3.843	1.40	3.50	7.00	
4	${\rm C}^6{\rm H}^{\rm b}$	4.518	1.30	10.40	5.60	13.20

* obscured by the Cp* and Me signals

Figure S8. Results of NMR simulations for the methylene protons at the C⁶ position of **4a** (red) and observed signals (black) (400 MHz, C₆D₆, 25 °C).

Figure S9. ¹³C{¹H} NMR spectrum of 4a (100 MHz, C₆D₆, 25 °C). The signals with the asterisk were derived from the C₅Me₅ signals of contaminated 5a.

¹H NMR (400 MHz, benzene- d_6 , 25 ° C): δ 1.5* (m, 1H, C⁵ H_2), 1.57 (s, 15H, C₅ Me_5), 1.73 (s, 3H, C⁴Me), 1.9* (m, 1H, C⁵ H_2), 1.90 (s, 3H, C⁴Me), 1.98 (s, 15H, C₅ Me_5), 3.45 (ddd, J= 13.0, 5.9, 5.8 Hz, 1H, C⁶ H_2), 3.81 (ddd, J= 13.0, 9.1, 5.1 Hz, 1H, C⁶ H_2), 5.74 (d, J= 7.2 Hz, 1H, C⁵H), 6.10 (s, 1H, C³H), 6.42 (s, 1H, C³H), 7.45 ppm (d, J= 7.2 Hz, 1H, C⁶H)

(* confirmed by H–H COSY). ¹³C NMR (100 MHz, Benzene- d_6 , 25 ° C): δ 10.6 (q, $J_{CH} = 127$ Hz, C₅Me₅), 12.4 (q, $J_{CH} = 125$ Hz, C₅Me₅), 20.9 (q, $J_{CH} = 128$ Hz, C⁴Me), 23.5 (q, $J_{CH} = 132$ Hz, C⁴Me), 30.7 (dd, $J_{CH} = 119$, 119 Hz, C⁵), 58.1 (dd, $J_{CH} = 141$, 140 Hz, C⁶), 74.7 (s C₅Me₅), 80.2 (s C₅Me₅), 91.5 (s, C²), 101.3 (s, C²), 111.0 (d, $J_{CH} = 168$ Hz, C⁵), 115.2 (d, $J_{CH} = 157$ Hz, C⁸), 116.3 (d, $J_{CH} = 157$ Hz, C⁸), 130.7 (s, C⁴), 131.2 (s, C⁴), 151.1 ppm (d, $J_{CH} = 177$ Hz, C⁶). IR (KBr, cm⁻¹): 2961, 2910, 1653, 1616, 1507, 1474, 1447, 1376, 1335, 1297, 1025.

Figure S10. ¹H NMR spectrum of **5a** (400 MHz, C₆D₆, 25 °C).

Table S3. Coupling parameters for the methylene protons at the C⁶ position of **5**a.

		δ/ppm	W/Hz	J[1]	J[2]	J[3]
1	C ⁵ H ^a	(1.500)*	1.40			
2	${\rm C}^{5}{\rm H}^{\rm b}$	(1.900)*	1.40	(16.40)		
3	C ⁶ H ^a	3.453	1.40	5.85	5.80	
4	$C^{6}H^{b}$	3.805	1.30	9.05	5.10	13.00

* obscured by the Cp* and Me signals

Figure S11. Results of NMR simulations for the methylene protons at the C⁶ position of **5a** (red) and observed signals (black) (400 MHz, C₆D₆, 25 °C).

Figure S12. ¹³C{¹H} NMR spectrum of **5a** (100 MHz, C₆D₆, 25 °C).

¹H NMR (400 MHz, benzene- d_6 , 25 ° C): δ 1.37 (s, 15H, C₅ Me_5), 1.60 (m, 1H, C⁵ H_2), 1.80 (s, 15H, C₅ Me_5), 2.09 (ddd, $J_{\rm HH}$ = 16.4, 5.3, 4.9 Hz, 1H, C⁵ H_2), 3.42 (ddd, $J_{\rm HH}$ = 13.5, 5.6, 5.3 Hz, 1H, C⁶ H_2), 3.64 (ddd, $J_{\rm HH}$ = 13.5, 9.9, 4.9 Hz, 1H, C⁶ H_2), 5.95 (dd, $J_{\rm HH}$ = 7.1, 2.0 Hz, 1H, C⁵H), 6.75 (dq, $J_{\rm HH}$ = 2.0 Hz, $J_{\rm HF}$ = 1.8 Hz, 1H, C³H), 6.88 (ddq,

 $J_{\rm HH} = 1.6, 1.1 \text{ Hz}, J_{\rm HF} = 1.7 \text{ Hz}, 1\text{H}, C^{3}\text{H}), 7.44 \text{ ppm (d, } J_{\rm HH} = 7.1 \text{ Hz}, 1\text{H}, C^{6}\text{H}). {}^{13}\text{C NMR (100 MHz, acetone-} d_{6}, 25 ° \text{ C}): \delta 10.4 (q, J_{\rm CH} = 127 \text{ Hz}, C_{5}Me_{5}), 12.0 (q, J_{\rm CH} = 126 \text{ Hz}, C_{5}Me_{5}), 23.3 (t, J_{\rm CH} = 130 \text{ Hz}, C^{5}\text{H}_{2}), 57.8 (dd, J_{\rm CH} = 143, 140 \text{ Hz}, C^{6}\text{H}_{2}), 76.2 (s C_{5}\text{Me}_{5}), 81.9 (s, C_{5}\text{Me}_{5}), 91.3 (s, C^{2}), 100.9 (s, C^{2}), 103.6 (dq, J_{\rm CH} = 167 \text{ Hz}, J_{\rm CF} = 3 \text{ Hz}, C^{5}), 120.0 (dq, J_{\rm CH} = 166 \text{ Hz}, J_{\rm CF} = 6 \text{ Hz}, C^{5}), 121.2 (q, J_{\rm CF} = 32 \text{ Hz}, C^{4}), 123.3 (q, J_{\rm CF} = 33 \text{ Hz}, C^{4}), 124.9 (q, J_{\rm CF} = 270 \text{ Hz}, CF_{3}), 125.4 (dq, J_{\rm CH} = 164 \text{ Hz}, J_{\rm CF} = 6 \text{ Hz}, C^{3}), 125.7 (q, J_{\rm CF} = 269 \text{ Hz}, CF_{3}), 153.1 \text{ ppm (d, } J_{\rm CH} = 182 \text{ Hz}, C^{6}).$ ${}^{19}\text{F}{}^{1}\text{H} \text{NMR} (377 \text{ MHz}, \text{ benzene-} d_{6}, 25 ° \text{ C}): \delta -65.9 (s, CF_{3}), -63.9 \text{ ppm (s, CF_{3})}.$

Figure **S13.** ¹H NMR spectrum of **5b** (400 MHz, C₆D₆, 25 °C).

		δ/ppm	W/Hz	J[1]	J[2]	J[3]	<i>J</i> [4]
1	C ⁵ H ^a	1.601	1.40				
2	C ⁵ H ^b	2.089	1.40	16.40			
3	C ⁶ H ^a	3.422	1.40	5.60	5.30		
4	C ⁶ H ^b	3.636	1.30	9.90	4.90	13.50	
5	¹⁹ F	(-63.9)		1.85	0.90	0.00	0.00

Table S4. Coupling parameters for the methylene protons at the C^5 and C^6 positions of **5b**.

Figure S14. Results of NMR simulations for the methylene protons at the C⁵ and C⁶ positions of **5b** (red) and observed signals (black) (400 MHz, C₆D₆, 25 °C).

Figure S15. Results of NMR simulations for the methylene protons at the C³ and C^{3'} positions of **5b** (red) and observed signals (black): C³H: J_{HH} = 1.60, 1.10 Hz; J_{HF} = 1.65 Hz, C^{3'}H: J_{HH} = 2.0 Hz; J_{HF} = 1.80 Hz. (400 MHz, C₆D₆, 25 °C).

Figure **S16.** ¹³C{¹H} NMR spectrum of **5b** (100 MHz, acetone-*d*₆, 25 °C).

Figure **S17.** ¹⁹F{¹H} NMR spectrum of **5b** (377 MHz, C₆D₆, 25 °C).

¹H NMR (400 MHz, benzene- d_6 , 25 ° C): δ 0.98 (t, J = 7.2 Hz, 3H, CH₂CH₃), 1.04 (t, J = 7.2 Hz, 3H, CH₂CH₃), 1.41 (s, 15H, C₅Me₅), 1.83 (s, 15H, C₅Me₅), 1.88* (m, 1H, C⁵H₂), 2.68 (ddd, J = 15.6, 5.4, 4.9 Hz, 1H, C⁵H₂), 3.62 (ddd, J = 13.4, 5.4, 5.0 Hz, 1H, C⁶H₂), 3.72 (ddd, J = 13.4, 10.5,

4.9 Hz, 1H, C⁶*H*₂), 4.03–4.20 (m, 4H, C*H*₂CH₃), 6.78 (d, *J* = 7.2 Hz, 1H, C⁵'*H*), 7.57 (d, *J* = 7.2 Hz, 1H, C⁶'*H*), 7.83 (s, 1H, C³*H*), 7.92 ppm (s, 1H, C³'*H*) (* confirmed by H–H COSY). ¹³C NMR (100 MHz, benzene- d_6 , 25 ° C): δ 10.3 (q, *J*_{CH} = 126 Hz, C₅*Me*₅), 12.0 (q, *J*_{CH} = 126 Hz, C₅*Me*₅), 14.4 (q, *J*_{CH} = 132 Hz, CH₂*C*H₃), 14.5 (q, *J*_{CH} = 126 Hz, CH₂CH₃), 24.9 (dd, *J*_{CH} = 131, 126 Hz, *C*⁵), 58.1 (dd, *J*_{CH} = 139, 139 Hz, *C*⁶), 60.2 (t, *J*_{CH} = 143 Hz, *C*H₂CH₃), 60.6 (t, *J*_{CH} = 145 Hz, *C*H₂CH₃), 76.0 (s *C*₅Me₅), 81.2 (s, *C*₅Me₅), 92.7 (s, *C*²), 102.7 (s, *C*²), 107.3 (d, *J*_{CH} = 169 Hz, *C*⁵), 122.2 (s, *C*⁴), 123.2 (s, *C*⁴), 126.2 (d, *J*_{CH} = 166 Hz, *C*³), 131.3 (d, *J*_{CH} = 162 Hz, *C*³), 150.9 (d, *J*_{CH} = 181 Hz, *C*⁶), 165.1 (s, *C*OOEt), 166.7 ppm (s, *C*OOEt).

Figure S18. ¹H NMR spectrum of **5c** (400 MHz, C₆D₆, 25 °C).

Table S5. Coupling parameters for the methylene protons at the C^5 and C^6 positions of **5**c.

		δ/ppm	W/Hz	J[1]	J[2]	J[3]
1	C ⁵ H ^a	(1.874)*	1.40			
2	${\rm C}^{5}{\rm H}^{\rm b}$	2.675	1.40	15.6		
3	C ⁶ H ^a	3.622	1.30	5.00	5.40	
4	C ⁶ H ^b	3.717	1.30	10.50	4.90	13.40

* obscured by the Cp* signal

Figure S19. Results of NMR simulations for the methylene protons at the C⁵ and C⁶ positions of **5c** (red) and observed signals (black) (400 MHz, C₆D₆, 25 °C).

Figure S20. ¹³C{¹H} NMR spectrum of 5c (100 MHz, C₆D₆, 25 °C).

(f) $(Cp*Ru)_{2}{\mu-\eta^{2}-4,4'-(CF_{3})_{2}dhbpy}(\mu-H)(H)$ (4b)

¹H NMR (400 MHz, benzene-d₆, 25 ° C): δ –14.89 (d, J = 5.1 Hz, 1H, RuH), –11.26 (d, J = 5.1 Hz, 1H, RuH), 1.58 (s, 15H, C₅Me₅), 1.72 (s, 15H, C₅Me₅), 4.15 (m, 1H, C⁶H₂), 6.85 (s, 1H, C³H) or C³H), 7.07 (s, 1H, C³Hor C³H), 7.83 ppm (d, J = 6.0 Hz, C⁶H). Other methylene signals derived from C⁵H₂ and C⁶H₂ could not be detected owing to the obstruction by the signals derived from **5b**.

Figure S21. ¹H NMR spectrum of the mixture obtained by the reaction of **5b** with 1 atm of H₂ at 40 °C; recorded after 24 h (400 MHz, C_6D_6 , 25 °C). Signals with an asterisk were derived from 2,2',4,4'-tetramethylpentane used for an internal standard.

(g) $(Cp*Ru)_{2}{\mu-\eta^{2}-4,4'-(COOEt)_{2}dhbpy}(\mu-H)(H)$ (4c)

¹H NMR (400 MHz, benzene- d_6 , 25 ° C): δ –14.79 (d, J = 4.5 Hz, 1H, RuH), –11.16 (d, J = 4.5 Hz, 1H, RuH), 0.88 (t, J = 7.1 Hz, 3H, CH₂C H_3), 1.11 (t, J = 7.1 Hz, 3H, CH₂C H_3), 1.62 (s, 15H, C₅ Me_5), 1.73 (s, 15H, C₅ Me_5), 2.78 (dd, J = 16.7, 5.4 Hz, 1H, C⁵ H_2), 3.2–3.4 (m, 1H, C⁶ H_2), 3.93 (q, J = 7.1 Hz, 2H, C H_2 CH₃), 6.93 (d, J = 5.9 Hz, 1H, C⁵H), 7.75 (s, C³H), 8.02 (d, J = 5.9 Hz, 1H, C⁶H), 8.10 ppm (s, 1H, C³H). Other methylene signals derived from C⁵ H_2 , C⁶ H_2 , and COOC H_2 CH₃ could not be detected owing to the obstruction by the signals derived from **5c**.

Figure S22. ¹H NMR spectrum of the mixture obtained by the reaction of **5c** with 1 atm of H₂ at 40 °C; recorded after 24 h (400 MHz, C_6D_6 , 25 °C). Signals with an asterisk were derived from 2,2',4,4'-tetra-methylpentane used for an internal standard.

¹H NMR (400 MHz, benzene- d_6 , 25 ° C): δ 1.04 (s, 9H, ^{*t*}BuNC), 1.6* (C⁵H₂), 1.69 (s, 15H, C₅Me₅), 1.73 (s, 15H, C₅Me₅), 1.93 (s, 6H, Me), 2.2* (C⁵H₂), 2.48 (ddd, J = 11.5, 7.9, 6.2 Hz, 1H, C⁶H₂), 2.81 (ddd, J ^tBuNC = 11.5, 8.6, 3.1 Hz, 1H, C⁶H₂), 4.47 (s, 1H, C³H), 6.10 (dd, J = 5.9, 1.7 Hz, 1H, C⁵'H), 6.62 (m, 1H, C³'H), 7.83 ppm (d, J = 5.8 Hz, 1H, C⁶'H).

¹³C NMR (100 MHz, benzene- d_6 , 25 ° C): δ 10.7 (q, $J_{CH} = 126$ Hz, C_5Me_5), 11.7 (q, $J_{CH} = 125$ Hz, C_5Me_5), 20.9 (q, $J_{CH} = 127$ Hz, C⁴Me or C4'Me), 27.3 (q, $J_{CH} = 123$ Hz, C4Me or C4'Me), 31.7 (q, $J_{CH} = 128$ Hz, Me_3 CNC), 44.4 (t, $J_{CH} = 124$ Hz, C^5), 55.6 (s, Me₃CNC), 59.2 (t, $J_{CH} = 135$ Hz, C^6), 59.7 (s, C^4), 71.5 (d, $J_{CH} = 163$ Hz, C^8), 82.5 (s, C_5Me_5), 87.3 (s, C_5Me_5), 94.5 (s, C^2), 114.0 (d, $J_{CH} = 160$ Hz, C^8), 115.9 (d, $J_{CH} = 162$ Hz, C^5), 143.7 (t, $J_{CH} = 6$ Hz, C^4), 150.8 (dd, $J_{CH} = 176$, 4 Hz, C^6), 168.9 (d, $J_{CH} = 8$ Hz, C^9), 176.2 ppm (s, BuNC).

Figure **S23.** ¹H NMR spectrum of **6a** (400 MHz, C₆D₆, 25 °C).

		δ/ppm	W/Hz	J[1]	J[2]	J[3]
1	${\rm C}^{5}{\rm H}^{\rm a}$	(2.040)*	1.40			
2	${\rm C}^{5}{\rm H}^{\rm b}$	(2.200)	1.40	(11.00)		
3	C ⁶ H ^a	2.481	2.10	6.20	7.90	
4	C ⁶ H ^b	2.813	2.00	3.10	8.60	11.50

Table S6. Coupling parameters for the methylene protons at the C⁶ position of **6a**.

obscured by the Cp and methyl signals.

Figure S24. Results of NMR simulations for the methylene protons at the C⁶ position of **6a** (red) and observed signals (black) (400 MHz, C₆D₆, 25 °C).

Figure S25. ¹³C{¹H} NMR spectrum of **6a** (100 MHz, C₆D₆, 25 °C). Asterisked signals were derived from **5a**. The signals with an asterisk were derived from the Cp* groups of contaminated **5a**.

¹H NMR (400 MHz, benzene- d_6 , 25 ° C): δ 0.91 (s, 9H, ^{*t*}BuNC), 1.55 (s, 15H, C₅Me₅), 1.64 (s, 15H, C₅Me₅), 2.19 (ddd, J= 11.6, 10.5, 7.2 Hz, 1H, C⁵H₂), 2.31 (ddd, J= 11.2, 7.2, 6.4 Hz, 1H, C⁶H₂), 2.39 (ddd, J= 11.6, 6.4, 1.5 Hz, 1H, C⁵H₂), 2.76 (ddd, J= 11.2, 10.5, 1.5 Hz, 1H, C⁶H₂), 5.12 (s, C³H), 6.25 (dd, J= 6.1, 2.0 Hz, 1H, C⁵'H),

7.02 (m, C³'*H*), 7.84 ppm (d, J = 6.1 Hz, 1H, C⁶'*H*). ¹³C{¹H} NMR (100 MHz, acetone- d_6 , 25 ° C): δ 10.7 (C₅*Me*₅), 11.3 (C₅*Me*₅), 31.7 ('BuNC'), 35.0 (q, $J_{CF} = 2$ Hz, C³), 54.5 (q, $J_{CF} = 31$ Hz, C⁴), 57.0 (Me₃*C*NC), 59.1 (*C*⁶), 68.8 (q, $J_{CF} = 5$ Hz, *C*⁵), 85.0 (*C*₅Me₅), 87.7 (*C*₅Me₅), 95.7 (*C*²), 111.0 (q, $J_{CF} = 4$ Hz, C³'or C⁵'), 111.2 (q, $J_{CF} = 4$ Hz, C³'or C⁵'), 124.6 (q, $J_{CF} = 272$ Hz, *C*F₃), 135.0 (q, $J_{CF} = 274$ Hz, *C*F₃), 136.2 (q, $J_{CF} = 33$ Hz, *C*⁴'), 153.4 (*C*⁶'), 169.0 (*C*²'), 210.0 ppm ('BuN*C*). ¹⁹F{¹H} NMR (377 MHz, benzene- d_6 , 25 ° C): δ –64.0 (s, *CF*₃), –60.2 ppm (s, *CF*₃).

Figure **S26.** ¹H NMR spectrum of **6b** (400 MHz, C₆D₆, 25 °C).

		δ/ppm	W/Hz	J[1]	J[2]	J[3]	J[4]
1	C ⁵ H ^a	2.189	1.50				
2	C ⁶ H ^a	2.310	1.50	7.20			
3	C ⁵ H ^b	2.390	1.50	-11.60	6.40		
4	C ⁶ H ^b	2.761	1.50	10.50	-11.20	1.50	
5	¹⁹ F			0.50	0.00	0.50	0.00

Table S7. Coupling parameters for the methylene protons at the C^5 and C^6 positions of **6b**.

Figure S27. Results of NMR simulations for the methylene protons at the C⁵ and C⁶ positions of **6b** (red) and observed signals (black) (400 MHz, C₆D₆, 25 °C).

Figure **S28.** ¹³C{¹H} NMR spectrum of **6b** (100 MHz, acetone-*d*₆, 25 °C).

Figure S29. ${}^{19}F{}^{1}H$ NMR spectrum of **6b** (377 MHz, C₆D₆, 25 °C).

¹H NMR (400 MHz, benzene- d_6 , 25 ° C): δ 1.48 (s, 15H, C₅ Me_5), 1.96 (d, J = 1.1 Hz, 6H, C⁴Me), 1.98 (s, 15H, C₅ Me_5), 5.73 (dd, J = 6.9, 1.8 Hz C⁵H), 6.63 (m, 2H, C³H), 7.62 ppm (d, J = 6.9 Hz, 2H, C⁶H). ¹³C NMR (100 MHz, benzene- d_6 , 25 ° C): δ 10.1 (q, $J_{CH} = 125$ Hz, C₅ Me_5), 12.2 (q, $J_{CH} = 124$ Hz, C₅ Me_5), 21.0 (q, $J_{CH} = 125$ Hz, C⁴Me), 74.9 (s C_5 Me₅), 79.2 (s, C_5 Me₅), 96.7

(s, C^2), 111.1 (d, $J_{CH} = 159$ Hz, C^5), 115.5 (d, $J_{CH} = 158$ Hz, C^3), 129.7 (s, C^4), 150.8 ppm (d, $J_{CH} = 176$ Hz, C^6). IR (KBr, cm⁻¹): 2959, 2910, 1654, 1616, 1474, 1448, 1377, 1027, 824.

Figure **S30.** ¹H NMR spectrum of **7a** (400 MHz, C₆D₆, 25 °C).

Figure S31. ${}^{13}C{}^{1}H$ NMR spectrum of 7a (100 MHz, C₆D₆, 25 °C).

(k) $(Cp*Ru)_{2}{\mu-\eta^{4}-4,4'-(CF_{3})_{2}bpy}$ (7b)

¹H NMR (400 MHz, benzene- d_6 , 25 ° C): δ 1.30 (s, 15H, C₅*Me*₅), 1.81 (d, *J* = 1.1 Hz, 6H, C⁴*Me*), 1.98 (s, 15H, C₅*Me*₅), 5.94 (dd, *J* = 7.1, 2.0 Hz C⁵*H*), 7.10 (m, 2H, C³*H*), 7.60 ppm (d, *J* = 7.1 Hz, 2H, C⁶*H*).

Figure S32. ¹H NMR spectrum of the mixture obtained by the thermolysis of 5b at 140 °C under reduced pressure; recorded after 6 days (400 MHz, C_6D_6 , 25 °C). The signals with an asterisk were derived from unidentified products.

¹H NMR (400 MHz, THF- d_8 , -25 ° C): δ -13.52 (d, J = 2.0 Hz, 1H, Ru \dot{H}), -13.39 (dd, J = 2.5, 2.0 Hz, 1H, Ru \dot{H}), 1.16 (s, 15H, C₅ Me_5), 1.67 (s, 15H, C₅ Me_5), 4.35 (dd, J = 3.8, 2.5, 1H, C⁹ \dot{H}), 6.84 (d, J = 8.9 Hz, 1H, C⁷ \dot{H}), 6.87 (dd, J = 8.9, 3.8 Hz, 1H, C⁸ \dot{H}), 7.13 (d, J = 8.2 Hz, 1H, C⁵H or C⁶ \dot{H}), 7.15 (dd, J = 8.0, 4.9 Hz, 1H, C³ \dot{H}), 7.37 (d, J = 8.2 Hz, 1H, C⁵H or C⁶ \dot{H}), 7.84 (d, J = 8.0 Hz, 1H, C⁴ \dot{H}), 9.11 ppm (d, J = 4.9 Hz, 1H, C²H). ¹³C NMR (100 MHz, THF- d_8 , 25 ° C): δ 10.8 (q, J_{CH} = 126 Hz, C₅ Me_5), 11.0 (q, J_{CH} = 126 Hz,

 C_5Me_5), 63.3 (d, $J_{CH} = 181$ Hz, C^9), 82.1 (s, C_5Me_5), 93.0 (s, C_5Me_5), 114.1 (d, $J_{CH} = 161$ Hz), 118.7 (d, $J_{CH} = 161$ Hz), 121.1 (s,), 121.2 (d, $J_{CH} = 163$ Hz), 126.8 (d, $J_{CH} = 157$ Hz), 128.2 (d, $J_{CH} = 163$ Hz), 130.7 (s), 139.9 (d, $J_{CH} = 159$ Hz), 144.1 (s), 149.3 (d, $J_{CH} = 149$ Hz), 150.9 ppm (s). Signals derived from the phenanthroline moiety could not be assigned except for the C⁹ signal that was π -bonded to the Ru centre.

Figure **S33**. ¹H NMR spectrum of **8** (400 MHz, THF-*d*₈, -25 °C).

Figure S34. Variable temperature ¹H NMR spectra of **8** showing (a) Cp*, (b) methine, and (c) hydrido regions with simulated spectra (400 MHz, THF- d_8).

Figure **S35.** Eyring plot for the dynamic process of **8**.

Figure S36. ¹H NMR spectra of **8** showing (a) phen, (b) methine, and (c) hydrido regions (black) and their simulated spectra (400 MHz, THF- d_8 , -25 °C). Signals with an asterisk were derived from contaminated 1,10-phenanthroline.

		δ/ppm	W/Hz	J[1]	J[2]	J[3]	J[4]	J[5]	J[6]	J[7]	J[8]	J [9]
1	RuH	-13.516	2.30									
2	RuH	-13.385	2.40	2.00								
3	C ⁹ H	4.350	1.80	0.50	2.50							
4	C ⁷ H	6.835	1.70	0.00	0.00	0.10						
5	C ³ H	7.154	1.90	0.00	0.00	0.00	0.00					
6	C ⁵ H or C ⁶ H	7.127	1.80	0.00	0.00	0.00	0.00	0.00				
7	C ⁸ H	6.872	1.70	0.00	0.00	3.80	8.90	0.00	0.00			
8	C ⁵ H or C ⁶ H	7.367	1.270	0.00	0.00	0.00	0.00	0.00	8.20	0.00		
9	C ⁴ H	7.839	1.80	0.00	0.00	0.00	0.00	7.96	0.00	0.00	0.00	
10	$C^{2}H$	9.111	1.70	0.00	0.00	0.00	0.00	4.94	0.00	0.00	0.00	1.05

Table S8. Estimated coupling parameters for the phenanthroline protons and hydrides of 8 at -25 °C.

Figure **S37.** ¹³C{¹H} NMR spectrum of **8** (100 MHz, THF-*d*₈, 25 °C).

Figure S38. ¹H NMR spectrum of the mixture obtained by reaction of **1** with 4,4'-dimethyl-2,2'-bipyridine (400 MHz, C_6D_6 , 25 °C).

3. Preliminary result of an X-ray diffraction study for 5a

Figure **S39.** Molecular structure of **5a** (Preliminary result). Disorder in the dihydrobipyridine moiety could not be resolved (C(4), C(5), C(10), and C(11) atoms). Monoclinic, C_2/c , a = 21.7838(13) Å, b = 17.3872(11) Å, c = 16.5280(9) Å, $\beta = 113.051(8)^\circ$, V = 5760.3(7) Å³, Z = 8, Temp = 123 K, $R (> 2\sigma) = 0.0774$, $wR_2 (> 2\sigma) = 0.1204$. GOF =1.080.