Supporting Information:

What are the signatures of tunnelling in enzyme-catalysed reactions?

Linus O. Johannissen[‡], Andreea I. Iorgu[‡], Nigel S. Scrutton, Sam Hay*

Manchester Institute of Biotechnology (MIB) and School of Chemistry, University of Manchester, 131 Princess St, Manchester, M1 7DN, U.K.

^{*†*}These authors contributed equally to this work.

*Corresponding author: sam.hay@manchester.ac.uk

Figure S1. Comparison of computed and experimental KIE values taken from Table 1. The solid black line is a linear fit to these data, which has a slope of 0.83 ± 0.13 (fixed y intercept) and R² = 0.83. The red point is considered to be an outlier as its inclusion reduces R² to 0.52. The solid red line is KIE, computed = KIE, experimental (*i.e.* y = x).

Figure S2. Computed $\kappa_H vs. \kappa_D$ values taken from Table 1. These data are fitted to both a linear (black line) and power (red line) function.

Figure S3. Computed K_{SC} and κ_H values taken from **Table 1**. These data are fitted to both a linear (black line; $y = (1.4\pm0.1)x$) and power (red line; $y = x^{(1.06\pm0.01)}$) function.

Figure S4. Additional data to accompany Figure 3. The H/T data for *Ec*DHFR taken from Table S6.

OYE variant	Label	ΔΔ <i>H</i> τ₀‡ / kJ mol⁻¹	SD	ΔΔ <i>S</i> _{τ0} ‡ / J mol ⁻¹ K ⁻¹	SD	Conditions/substrates/etc.	Reference			
PETNR										
WT	1	6.4	0.4	5.8	1.5					
L25A	2	8.6	1.3	13.3	5.6					
L25I	3	6.3	0.7	5.4	2.5	5-40 °C, NADPH				
I107A	4	1.2	2.3	-12.3	7.7					
1107L	5	4.2	0.8	-1.3	2.8		1			
WT	6	4.9	0.2	0.1	0.7		T			
L25A	7	6.6	1.2	6.4	4.2		2			
L25I	8	2.3	1.8	-9.2	6.0	5-40 °C, NADH				
I107A	9	7.1	2.0	6.8	6.7					
1107L	10	6.7	0.4	6.1	1.2					
WT	11	12.2	1.2	23.9	4.0	5-40 °C, mNH ₂ 5-40 °C, mBu				
WT	12	11.1	1.3	20.4	4.5					
				τογ	Έ					
	13	3.3	2.8	-6.0	9.6	5-40 °C, NADPH	2			
\A/T	14	3.4	0.5	-5.4	1.6	5-40 °C, NADH				
VVI	15	4.7	1.9	-0.9	6.8	5-40 °C, mNH2				
	16	13.8	2.2	28.4	7.4	5-40 °C, mBu				
				Xen	Α					
	17	6.0	2.5	-7.7	8.8	5-40 °C, NADPH	2			
N/T	18	4.8	3.3	3.2	11.3	5-40 °C <i>,</i> NADH				
VVI	19	12.1	2.7	22.8	9.2	5-40 °C, mNH2				
	20	17.9	1.4	42.7	4.8	5-40 °C, mBu				
	MR									
WТ	21	8.3	0.8	11.7	2.8	5-40 °C, NADH	3			

 Table S1.
 Thermodynamic parameters for variants from OYE family presented in Figure 3.

SLO-1 variant	Label	ΔΔH _{τ0} ‡ / kJ mol⁻¹	SD	ΔΔ <i>S</i> _{τ0} ‡ / J mol ⁻¹ K ⁻¹	SD	Conditions/substrates/etc.	Reference
WT	1	1.3	0.8	-24.0	-2.3		
L546A	2	5.5	2.5	-11.5	-8.3		4
L754A	3	5.9	2.1	-9.1	-8.3	5-50 C, LA	4
I553A	4	14.3	1.3	17.6	-4.2		
1553V	5	8.4	2.1	10.0	-5.5		
1553L	6	11.7	2.5	10.0	-11.1	10-50 °C, LA	5
1553G	7	19.7	2.9	30.0	-10.5		
L546A/I553A	8	9.2	1.7	-0.4	-3.6	15-50 °C, LA	6

 Table S2.
 Thermodynamic parameters for SLO-1 variants presented in Figure 3.

 Table S3.
 Thermodynamic parameters for AADH variants presented in Figure 3.

AADH variant	Label	ΔΔ <i>H</i> τ₀‡ / kJ mol⁻¹	SD	ΔΔ <i>S</i> _{τ0} ‡ / J mol ⁻¹ K ⁻¹	SD	Conditions/substrates/etc.	Reference
	1	-3.8	3.6	-48.3	-0.1	tryptamine	7
	2	0.7	1.7	-24.7	-0.2	PEA-H	8
WT	3	6.3	1.7	1.3	-0.5	PEA-OH	
	4	11.2	1.6	13.0	-0.4	PEA-CH3	
	5	11.9	1.9	17.0	-0.6	PEA-OCH3	
	6	5.5	3.1	-6.2	-0.5	PEA-NO2	
	7	7.0	2.0	0.3	-0.3	PEA-F	
	8	10.8	1.5	11.2	-0.3	PEA-Cl	
	9	9.5	1.8	7.0	-0.2	PEA-Br	

Table S4. Thermodynamic parameters for *Bs*DHFR variants presented in Figure 3.

BsDHFR variant	Label	∆∆ <i>H</i> _{т0} ŧ / kJ mol⁻¹	SD	ΔΔS _{τ0} ‡ / J mol ⁻¹ K ⁻¹	SD	Conditions/substrates/etc.	Reference
WT	1	0.8	1.0	1.2	-0.2		
L20M	2	-0.2	1.8	-0.8	-0.4		
A104Q	3	3.3	1.0	14.3	-0.5		
L20M/A104Q	4	1.4	1.0	8.0	0.0	5-35(55) °C	9
P122E	5	0.8	1.9	5.4	-0.3		
P129D	6	1.6	2.0	8.0	-0.4		
P122E/P129D	7	2.4	1.0	11.2	-0.3		

<i>Tm</i> DHFR variant	Label	ΔΔ <i>H</i> _{τ0} ‡ / kJ mol⁻¹	SD	ΔΔ <i>S</i> _{τ0} * / J mol ⁻¹ K ⁻ 1	SD	Conditions/substrates/etc.	Reference
	1	16.8	4.1	51.7	-4.2	6-25 °C	10
	2	0.0	0.9	-3.7	-2.5	25-65 °C	10
	3	0.0	1.0	-3.7	-2.5	17% glycerol, 25-50 °C	
	4	-0.4	1.7	-1.7	-5.6	33% glycerol, 25-50 °C	
)A/T	5	0.2	1.5	2.2	-4.9	50% glycerol, 25-50 °C	
VVI	6	-0.6	1.7	-4.3	-5.5	17% sucrose, 25-50 °C	11
	7	-1.3	1.6	-5.8	-5.4	30% sucrose, 25-50 °C	11
	8	18.9	4.0	63.1	-0.6	17% glycerol, 6-25 °C	
	9	27.1	5.8	93.7	-1.0	30% glycerol, 6-25 °C	
	10	37.9	5.0	133.9	-0.7	50% glycerol, 6-25 °C	
K129E	11	0.3	0.7	-0.8	-2.3		
E136K	12	-2.2	0.4	-8.6	-1.2	E GE °C	10
E138K	13	-1.4	0.4	-5.8	-1.2	3-05 C	12
E136K/E138K	14	-2.6	0.6	-1.5	-1.4		
	15	12.4	7.2	57.4	-8.3	0.25% CHAPS, 5-25 °C	
VVI	16	1.7	2.5	2.1	-0.4	0.25% CHAPS, 25-55 °C	
V/12CF	17	21.3	5.8	72.6	-1.0	5-25 °C	10
VIZOE	18	-7.8	3.6	-26.0	-0.8	25-55 °C	15
V/11D	19	-1.1	3.3	-5.3	-0.6	5-40 °	
V11D	20	6.0	2.2	23.4	-0.4	0.25% CHAPS, 5-50 °C	
	21	7.9	1.2	22.1	-2.4	folate, 6-25 °C	14
WT	22	-1.5	1.4	-9.0	-2.0	folate, 25-60 °C	14

Table S5. Thermodynamic parameters for *Tm*DHFR variants presented in Figure 3.

<i>Ec</i> DHFR variant	Label	ΔΔ <i>Η</i> τ0 [‡] / kJ mol⁻¹	SD	ΔΔ <i>S</i> _{τ0} ‡ / J mol ⁻¹ K ⁻¹	SD	Conditions/substrates/etc.	Reference			
D/H										
WT	1	5.3	0.8	18.5	-3.0	рЦ 7	15			
G121V	2	13.2	0.7	49.1	-2.2	рп 7	15			
	3	7.0	0.7	23.8	-1.0	17% methanol, pH 7				
	4	8.6	2.1	29.4	-3.4	33% methanol, pH 7				
	5	4.5	6.8	15.6	-6.9	50% methanol, pH 7				
	6	7.9	4.6	27.2	-0.7	17% glycerol, pH 7	16			
WT	7	7.3	3.6	24.9	-0.5	33% glycerol, pH 7	10			
	8	4.4	3.8	15.4	-0.6	50% glycerol, pH 7				
	9	0.0	0.9	-1.2	-0.1	17% sucrose, pH 7				
	10	-1.3	3.2	-6.2	-0.7	30% sucrose, pH 7				
	11	5.4	0.9	18.4	-1.5	рН 9				
N22D/C2404	12	5.2	1.5	18.4	-3.0	pH 7	17			
NZ3P/5248A	13	-2.1	1.7	-7.3	-0.2	рН 9				
S148P	14	-0.5	7.4	5.8	-1.7	pH 7	18			
WT	15	-2.4	0.2	-8.6	-1.9	pH7				
	16	-2.5	1.0	-10.7	-2.0	pH9				
Y100F	17	-1.5	0.1	-10.1	-0.3	рН 7	19			
D27S	18	0.7	0.2	-2.9	-0.5	рН 7				
D27S/Y100F	19	6.9	0.4	19.1	-0.8	рН 7				
				т/н						
WT	1	-2.9	0.8	-16.2	-1.8		20			
I14V	2	-1.3	0.2	-11.9	-0.8					
I14A	3	-0.8	0.3	-12.9	-0.9		21			
I14G	4	11.4	0.3	31.0	-1.0					
I14A/G121V	5	15.3	0.5	38.3	-1.7		22			
G121V	6	-1.5	0.1	-16.6	-1.8		22			
M42W	7	-0.1	0.2	-8.6	-0.6	tritium/hydrogen	23			
G121V/M42W	8	12.6	1.3	19.1	-8.3		24			
W133F	9	-2.5	0.3	-14.6	-1.1					
F125M	10	1.5	0.4	-5.3	-1.3		25			
G121V/F125M	11	11.7	0.4	29.2	-1.1		25			
M42W/F125M	12	14.3	0.8	38.3	-2.5					

 Table S6.
 Thermodynamic parameters for *Ec*DHFR variants presented in Figure 3 and Figure S4.

References

- A. I. Iorgu, N. J. Baxter, M. J. Cliff, C. W. Levy, J. P. Waltho, S. Hay and N. S. Scrutton, ACS Catal., 2018, 8, 11589–11599.
- 2 A. Geddes, C. E. Paul, S. Hay, F. Hollmann and N. S. Scrutton, *J. Am. Chem. Soc.*, 2016, **138**, 11089–11092.
- 3 M. Delgado, S. Görlich, J. E. Longbotham, N. S. Scrutton, S. Hay, V. Moliner and I. Tuñón, ACS Catal., 2017, **7**, 3190–3198.
- 4 M. J. Knapp, K. Rickert and J. P. Klinman, J. Am. Chem. Soc., 2002, **124**, 3865–3874.
- 5 M. P. Meyer, D. R. Tomchick and J. P. Klinman, *Proc. Natl. Acad. Sci.*, 2008, **105**, 1146–1151.
- 6 S. C. Sharma and J. P. Klinman, J. Am. Chem. Soc., 2008, **130**, 17632–17633.
- L. Masgrau, A. Roujeinikova, L. O. Johannissen, P. Hothi, J. Basran, K. E. Ranaghan, A. J. Mulholland, M. J. Sutcliffe, N. S. Scrutton and D. Leys, *Science (80-.).*, 2006, **312**, 237–241.
- 8 P. Hothi, S. Hay, A. Roujeinikova, M. J. Sutcliffe, M. Lee, D. Leys, P. M. Cullis and N. S. Scrutton, *Chembiochem*, 2008, **9**, 2839–45.
- 9 J. Guo, L. Y. P. Luk, E. J. Loveridge and R. K. Allemann, *Biochemistry*, 2014, **53**, 2855–2863.
- 10 G. Maglia and R. K. Allemann, J. Am. Chem. Soc., 2003, 125, 13372–13373.
- 11 E. J. Loveridge, R. M. Evans and R. K. Allemann, *Chem. A Eur. J.*, 2008, **14**, 10782–10788.
- 12 E. J. Loveridge and R. K. Allemann, *Biochemistry*, 2010, 49, 5390–5396.
- 13 E. J. Loveridge, R. J. Rodriguez, R. S. Swanwick and R. K. Allemann, *Biochemistry*, 2009, 48, 5922–5933.
- 14 E. J. Loveridge, L. Hroch, R. L. Hughes, T. Williams, R. L. Davies, A. Angelastro, L. Y. P. Luk, G. Maglia and R. K. Allemann, *Biochemistry*, 2017, **56**, 1879–1886.
- 15 R. S. Swanwick, G. Maglia, L. Tey and R. K. Allemann, *Biochem. J.*, 2006, **394**, 259–265.
- 16 E. J. Loveridge, L. H. Tey and R. K. Allemann, J. Am. Chem. Soc., 2010, 132, 1137–1143.
- 17 E. J. Loveridge, E. M. Behiry, J. Guo and R. K. Allemann, *Nat. Chem.*, 2012, 4, 292–297.
- 18 E. M. Behiry, L. Y. P. Luk, S. M. Matthews, E. J. Loveridge and R. K. Allemann, *Biochemistry*, 2014, **53**, 4761–4768.
- 19 C. T. Liu, K. Francis, J. P. Layfield, X. Huang, S. Hammes-Schiffer, A. Kohen and S. J. Benkovic, *Proc. Natl. Acad. Sci.*, 2014, **111**, 18231–18236.
- 20 R. S. Sikorski, L. Wang, K. A. Markham, P. T. R. Rajagopalan, S. J. Benkovic and A. Kohen, *J. Am. Chem. Soc.*, 2004, **126**, 4778–4779.
- 21 V. Stojković, L. L. Perissinotti, D. Willmer, S. J. Benkovic and A. Kohen, *J. Am. Chem. Soc.*, 2012, **134**, 1738–1745.
- 22 P. Singh, K. Francis and A. Kohen, ACS Catal., 2015, 5, 3067–3073.
- 23 L. Wang, N. M. Goodey, S. J. Benkovic and A. Kohen, *Philos. Trans. R. Soc. B Biol. Sci.*, 2006, **361**, 1307– 1315.
- 24 L. Wang, N. M. Goodey, S. J. Benkovic and A. Kohen, *Proc. Natl. Acad. Sci.*, 2006, **103**, 15753–8.
- 25 P. Singh, A. Sen, K. Francis and A. Kohen, J. Am. Chem. Soc., 2014, 136, 2575–2582.