Kinetic analysis of bioorthogonal reaction mechanisms using Raman microscopy

William J. Tipping, Martin Lee, Valerie G. Brunton, Guy C. Lloyd-Jones and Alison N. Hulme

Supplementary Information

Supplementary Figures 1 – 7	. S1 – S5
Supplementary Tables S1 – S5	. S5 – S6

Figure S1 Reaction monitoring of the CuAAC reaction between EdU (1) and biotin-PEG3-azide (2) using infrared (IR) spectroscopy. **A** IR spectra of reaction mixture comprising EdU (450 mM), biotin-PEG3-azide (450 mM), CuSO₄ (10 mM) and Na ascorbate (10 mM) in DMSO/TBS 3:2 v/v. An aliquot of the reaction mixture was removed at each timepoint and the individual IR spectra presented between 0-40 min. The IR spectra were normalised to the baseline at 2220 cm⁻¹. Peak annotation: 2096 cm⁻¹ (N₃, azide) **B** Expanded view of the spectra provided in **A** scaled between 2000-4500 cm⁻¹. **C** Control CuAAC reaction where [Cu] = 0 mM (using the same concentrations for the other reagents as in **A**, and consistent acquisition & normalisation procedures). **D** Integration analysis of the normalised IR peak at 2096 cm⁻¹ (N₃, biotin-PEG3-azide) for the reaction presented in **A** (blue squares, +Cu (10 mM) with exponential fitting applied) and a control reaction (black circles, -Cu, linear fitting) where [Cu] = 0 mM. A_P = peak area @ 2096 cm⁻¹.

Figure S2 Raman spectroscopy of alkyne- and azide-labelled biomolecular reagents. Raman spectrum of (i) EdU (1) and (ii) biotin-PEG3- azide (2) acquired using $\lambda_{ex} = 532$ nm for 10 s, using a 20× objective lens and 1% laser power for (i) and 10% laser power for (ii). Raman spectra are scaled between (i) 0 – 38,000 and (ii) 0 – 60,000 counts and offset for clarity. The following peaks have been annotated: 2120 cm⁻¹ (EdU; C=C); 2095 cm⁻¹ (biotin-PEG3-azide; N=N=N asymmetric stretch).

Figure S3 Raman spectrum of propargyl choline (bromide salt). Peak annotation 2131 cm⁻¹ (propargyl choline bromide; C=C). Raman spectrum was acquired using $\lambda_{ex} = 785$ nm, 30 s integration time and a 50× objective lens.

Figure S4 Calibration curves of phenylacetylene (PA) and 1,4-bisphenylbuta-1,3-diyne (5) by spontaneous Raman spectroscopy. Calibration curve of **A** phenylacetylene in DMSO (0 – 100 mM) and **B** 1,4-bisphenylbuta-1,3-diyne analysed by Raman spectroscopy. The spectra were normalised to the intensity peak at 1418 cm⁻¹ (DMSO CH def.) and the area of the peak at 2102 cm⁻¹ or 2219 cm⁻¹ was determined in each case. The data points represent the mean of 6 replicate spectra, with error bars ± S.D. A linear fitting is applied to each data set. Raman spectra were acquired using $\lambda_{ex} = 532$ nm, 20 s integration time, 20x objective lens. A_p = peak area @ 2102 cm⁻¹ / 2219 cm⁻¹.

Figure S5 Reaction monitoring of the Glaser-Hay homocoupling of phenylacetylene using Raman spectroscopy. **A** Glaser-Hay reaction of phenylacetylene (100 mM) using Cul (10 mM, 10 mol%) and TMEDA (10 mM, 10 mol%) in DMSO. Raman spectra of the reaction mixture acquired at the indicated timepoints following addition of the Cul/TMEDA catalyst. An aliquot of the reaction mixture were removed at each timepoint and the individual Raman spectra presented between 0-60 min. Spectra were acquired using $\lambda_{ex} = 532$ nm for 20 s using a 20x objective lens. The Raman spectra were normalised to the intensity of the peak at 1418 cm⁻¹ (DMSO CH def.). **B** Raman spectroscopy of (i) DMSO, (ii) phenylacetylene (PA) (100 mM in DMSO) and (iii) 1,4-bisphenylbuta-1,3-diyne (**5**) (100 mM in DMSO). Spectra were acquired using $\lambda_{ex} = 532$ nm for 20 s using a 20x objective lens. The Raman spectroscopy of in DMSO, the peak at 1418 cm⁻¹ (DMSO CH def.) and offset for clarity.

Figure S6 Chemical structures of the copper co-ordinating ligands used in this study.

Figure S7 Second-order plot of initial phenylacetylene concentration in the Glaser-Hay reaction. Phenylacetylene (PA, 50-150 mM) was reacted with Cul (10 mM) and TMEDA (10 mM) by Raman spectroscopy using $\lambda_{ex} = 532$ nm for 20 s using a 20x objective lens. A linear fitting was applied to each dataset and rate constants are provided for each [PA] with $k_{obs} \pm 0.5$ RMSE.

Table S1 Kinetics of the CuAAC reaction of EdU and biotin-PEG3-azide with respect to varying [Cu]_{tot}. Tabulated data accompanying **Figure 5A**.

[EdU] (10 ⁻³ M)	[azide] (10 ⁻³ M)	[NaAsc] (10 ⁻³ M)	[Cu] _{tot} (10 ⁻³ M)	[THPTA] (10 ⁻³ M)	<i>k</i> _{obs} (10 ⁻³ s ⁻¹)
100	100	100	0	0	≤0.2
100	100	100	1	1	0.1 ± 0.2
100	100	100	2	2	0.4 ± 0.3
100	100	100	5	5	3.4 ± 0.4
100	100	100	10	10	8.8 ± 1.2
100	100	100	15	15	13 ± 3

[EdU] (10 ⁻³ M)	[azide] (10 ⁻³ M)	[NaAsc] (10 ⁻³ M)	[Cu] _{tot} (10 ⁻³ M)	[THPTA] (10 ⁻³ M)	[L]/[Cu] _{tot}	<i>k</i> _{obs} (10 ⁻³ s ⁻¹)
100	100	100	5	0	0	0.3 ± 0.2
100	100	100	5	2.5	0.5	2.9 ± 0.8
100	100	100	5	5	1	3.4 ± 0.4
100	100	100	5	7.5	1.5	3.1 ± 0.7
100	100	100	5	10	2	3.6 ± 0.8
100	100	100	5	15	3	2.6 ± 0.8

Table S2 Kinetics of the CuAAC reaction of EdU and biotin-PEG3-azide with respect to varying[THPTA/[Cu]_{tot}. Tabulated data accompanying **Figure 5B**.

Table S3 Experimental conditions for the Glaser-Hay homocoupling of phenyl acetylene.

Entry	[PA] (mM)	[Cu] _{tot} (mM)	[Ligand] (mM)
1	100	0-20 ^[a]	0-20
2	100	10	0-15 ^[b]
3	100	10 ^[c]	10
4	100	10	10 ^[d]

^[a] [Cul] = [TMEDA] for all combinations. ^[b] [TMEDA] varied with fixed [Cul] concentration. ^[c] Cu source varied between Cul and Cu(OAc)₂. ^[d] Ligand varied between none, TMEDA and bipy-diol.

Table S4 Kinetics of the Glaser-Hay homocoupling of phenyl acetylene with respect to varying [Cu]_{tot}. Tabulated data accompanying **Figure 7A**.

[PA] (10 ⁻³ M)	[Cu] _{tot} (10 ⁻³ M)	[TMEDA] (10 ⁻³ M)	[Cu] ² _{tot} (10 ⁻⁶ M ²)	<i>k</i> _{obs} (10 ⁻³ Μ ⁻¹ s ⁻¹)
100	0	0	0.0	≤0.2
100	2.5	2.5	6.2	0.5 ± 0.2
100	5.0	5.0	25	1.1 ± 0.5
100	7.5	7.5	56	2.5 ± 0.3
100	10.0	10.0	100	4.1 ± 0.8
100	15.0	15.0	225	11.2 ± 1.9
100	20.0	20.0	400	17.7 ± 2.2

Table S5 Kinetics of the Glaser-Hay homocoupling of phenyl acetylene with respect to varying[TMEDA]/[Cu]_{tot}. Tabulated data accompanying **Figure 7B**.

[PA] (10 ⁻³ M)	[Cu] _{tot} (10 ⁻³ M)	[TMEDA] (10 ⁻³ M)	[TMEDA]/[Cu] _{tot}	<i>k</i> _{obs} (10⁻³ M⁻¹ s⁻¹)
100	10	0	0	0.07 ± 0.06
100	10	5	0.5	1.2 ± 0.4
100	10	10	1	4.1 ± 0.8
100	10	15	1.5	0.20 ± 0.07