Supplementary Information for

Understanding Electronic Effects on Carboxylate-Assisted C–H Activation at Ruthenium, The Importance of Kinetic and Thermodynamic Control

Raed A Alharis,[‡],^a Claire L. McMullin[†],^b David L. Davies,^{*},^a Kuldip Singh,^a and Stuart A. Macgregor. ^{*},^b

^aDepartment of Chemistry, University of Leicester, Leicester, United Kingdom.

^bInstitute of Chemical Sciences, Heriot-Watt University, Edinburgh, United Kingdom, EH14 4AS.

[†]Present address: Department of Chemistry, University of Bath, BA2 7AY, UK.

Contents

	Pages
Fig S1 X-ray structures of selected complexes	3
Tables S1 Selected bond lengths and angles	4
General procedure for H/D exchange and Table S2 of results	4
Competition experiments Tables S3 and S4 of results	5-6
Figure S2 Hammett plot of $log(k_R/k_H)$ versus σm^+ and σp^+	7
Experimental Procedures and Characterisation data	8-15
NMR spectra	16-49

X-ray structures

Table S1: Selected bond distances (Å) and bond angles [°] for Ru complexes, 1-H, 1-OMe,						
		1-F, 1-CF	$_3$, 1-NO ₂ and	2-F .		
	1-H ^a	1-OMe	1-F	1-CF ₃	1-NO ₂	2-F
Ru—C(9)	2.074(3)	2.069(3)	2.067(4)	2.055(6)	2.058(8)	2.082(3)
Ru—N(1)	2.066(3)	2.064(3)	2.061(4)	2.060(5)	2.068(6)	2.071(3)
Ru—Cl(1)	2.420(1)	2.418(1)	2.420 (1)	2.427(1)	2.431(2)	2.4212(9)
	2.165(3)	2.164(4)	2.166(5)	2.147(6)	2.172(7)	2.165(3)
	2.185(3)	2.172(3)	2.189(5)	2.181(6)	2.193(7)	2.180(3)
Ru—ring	2.187(3)	2.179(4)	2.189(5)	2.194(6)	2.194(7)	2.190(3)
	2.203(3)	2.184(3)	2.205(5)	2.225(6)	2.220(7)	2.196(3)
	2.252(3)	2.262(3)	2.240(5)	2.241(6)	2.255(7)	2.252(3)
	2.243(3)	2.292(3)	2.242(4)	2.261(6)	2.261(7)	2.288(3)
C(9)— Ru — $N(1)$	77.38(12)	77.56(13)	77.53(17)	77.60(2)	77.2(3)	77.46(11)

a The structure for 1-H has been published previously¹

General procedure for the deuteration experiments

An NMR tube was charged with the selected ligand (0.25 mmol) followed by 0.25 ml of a d⁴-MeOD solution of $[RuCl_2(p-cymene)]_2$ (7.7 mg.) followed by 0.25 ml of a d⁴-MeOD solution of NaOAc (0.05 mmol, 4.1 mg.). The percentage of deuteration was monitored and determined by ¹H NMR spectroscopy and the site of deuteration was confirmed by ²H NMR spectroscopy.

For L1-R %D in both *ortho* sites. For L2-R ratio A:B corresponding to formation of *ortho* cyclometallated isomer and *para* cyclometallated isomer respectively.

Table S2 Results of the deuteration experiments.				
L	Time (Temp.)	%D A:B ^b		
L1-NMe ₂	16 days (r.t.) 53 days (r.t.)	15:15 32:32		
L1-OMe	3 days (r.t.) °10 days (r.t.)	N.D N.D		
L2-NMe ₂	2 h. (r.t.) 5 days (r.t.)	8:50 92:95		
L2-OMe	4 h. (r.t.) 6 days (r.t.)	15:15 98:98		
L2-Me	7 days (r.t.) 28 days (r.t.)	18:24 33:62		

b: % D incorporation refers to each site

c: mixture was not left longer to show further H/D exchange.

d: deuterium exchange experiment was not done.

ND = not detected.

Competition experiments

An oven-dried Schlenk tube equipped with a stirrer bar was degassed three times and left under N2 atmosphere. The reagents and solvent were added in the following order [RuCl₂(p-cymene)]₂ (7.7 mg, 0.0125 mmol), NaOAc (2.1 mg, 0.025 mmol), dry solvent (MeOH 1 ml + DCM 3 ml) and the mixture was stirred for 5 minutes. Then ligand 1 (0.125 mmol) + ligand 2 (0.125 mmol) were dissolved in DCM (1 ml) before adding them to Schlenk tube. The Schlenk tube was then sealed and left stirring at r.t.. The reaction was monitored by integration of appropriate signals in the ¹H NMR spectrum and/or by ESI-MS (see below). After some time the reactions were heated to 50 °C and in some cases pivalic acid was added to help establish equilibrium. Alternatively the reaction was repeated on the same scale in TFE (5 ml) with pivalic acid (0.025 mmol) to try and ensure the reaction had reached equilibrium. Five equivalents of ligand are used so that as the reaction progresses there is not a significant change in overall concentration of either ligand. Hence measuring the overall product ratio is a good approximation of the relative rate of the reaction of the two ligands. All the initial ratios were measured after 15 minutes and are taken as indicative of kinetic selectivity. For entries 5 and 6 in **Table S3** and 7 and 8 in **Table S4** the reactions are very slow so the conversion to products is too small to measure at very short reactions times.

Table S	Table S3: Results of competition experiments of meta- substituted Ru-complexes.					
complex		nplex	$R_1:R_2$	R ₁ :R ₂	$R_1:R_2$	
Entry	R ₁	R ₂	at r.t. ^a	at r.t. ^b	at 50 °C°	
1	Н	NMe ₂	1:2.3	1:2.1	2.7:1	
2	OMe	Н	1:1.4	1:1.2	1.2:1	
3	Н	Me	1:1.3	1:1.2	1.5:1	
4	F	Н	1:7.8	1:5.7	2.5:1	
5	CF ₃	F	1:4.7	1:4.7	1.5:1 ^d	
6	NO ₂	CF ₃	-	1:3.5	5.8:1 ^d	

a: DCM:MeOH (4:1) after 15 min except entry 5 after 2 hours.

b: DCM:MeOH (4:1) after 24 hours.

c: DCM:MeOH (4:1) after 3, 5, 4 and 12 days for entries 1, 2, 3 and 4 respectively.

d: TFE 5 ml + pivalic acid at 90 °C after 24 hours.

Table S4: Results of competition experiments of para- substituted Ru-complexes.

Enters	co	mplex	$R_1 vs p - R_2(o - R_2)$	$R_1 vs p-R_2(o-R_2)$	$R_1 vs p - R_2(o - R_2)$
Entry	R ₁	R ₂	at r.t. ^a	at r.t. ^b	at 50 °C°
1	Me	NMe ₂	1:8.7	1.3:1	6.0:1
2e	Me	NMe ₂	1:20	-	-
3	Н	OMe	1:1.8(2.3)	1.3:1(2.15)	7.2:1(1.7)
4	Н	Me	1:1.3	1:1.1	4.3:1
5	Н	F	12:1(3.8)	11:1(4)	3.1:1(42)
6 ^f	Н	CF ₃	10:1	9:1	-
6a ^{f, g}	Н	CF ₃	9.6:1	7.8:1	-
7	CF ₃	F	-	1:4.0(12)	4.0:1(51)
8	NO ₂	CF ₃	-	1:2.7	5.0:1 ^d

a: DCM:MeOH (4:1) after 15 min.

b: DCM:MeOH (4:1) after 24 hours.

c: DCM:MeOH (4:1) after 7, 4, 3, 11 and 9 days for entries 1, 3, 4, 5 and 7 respectively.

d: TFE 5 ml + pivalic acid at 90 °C after 24 hours.

e: Different procedure, base (DABCO) was added to inhibit reverse reaction, this is the value used in the Hammett plot.

f: Different conditions, M:L1-H:L-2CF₃ (1:1.5:7.5) therefore real ratio 1-H:3-CF₃ = 48:1. Increased amount of L2-CF3 used otherwise the ratio is too small to measure

g: Ratio according to the ESI-MS.

Due to the high reversibility of reaction with L2-NMe₂ (entry 1 Table S4 above) the reaction was repeated using a base (DABCO) to inhibit the reverse reaction by reacting with the acetic acid formed (entry 2). This did indeed alter the ratio from 1:8.7 (Me:NMe₂) without base to 1:20 with base, hence the latter value was used in the Hammett plot

In the competition reaction between L1-H and L2-CF₃, using the usual conditions only the H product (1-H) was observed hence the reaction was repeated with more of L2-CF₃ present (entry 6 Table S4) and the ratio was measured by ¹H NMR and ESI-MS spectrometry (entry 6a). Reactions with electron withdrawing groups have been heated at 50 °C (DCM/MeOH) or at 90 °C (TFE + pivalic acid) to try and establish the equilibrium ratios.

Fig.S2: Hammett plot of log (k_R/k_H) for formation of meta and para-substituted complexes of Ru against σm^+ and σp^+ .

Experimental Procedures and Characterisation Data

General synthesis of cyclometallated complexes

Two equivalents of ligand were added to a solution of one equivalent of $[RuCl_2(p-cymene)]_2$ and two equivalents of NaOAc in dry MeOH or a mixture of dry MeOH and dry DCM in a Schlenk tube and stirred for several hours at room temperature, unless otherwise stated. The reaction was monitored periodically by ¹H NMR spectroscopy until completion was reached. The solvent was then evaporated on a rotary evaporator. The crude product was dissolved in DCM or THF and then filtered through Celite. The filtrate was evaporated to dryness and was precipitated from DCM or THF\petroleum ether to give pure cyclometallated products. If necessary, the cyclometallated products were purified by flash chromatography.

Cyclometallation of 2-phenyl pyrazole (L1-H) with [RuCl₂(p-cymene)]₂

The general procedure was followed using $[RuCl_2(p-cymene)]_2$ (50 mg., 0.081 mmol), 2-phenyl pyrazole (23.5 mg., 0.163 mmol) and NaOAc (13.7 mg., 0.167 mmol) in dry MeOH (5 ml) and the mixture was stirred for 1 hour at room temperature. The product was precipitated from DCM / petroleum ether to give **1-H** (53 mg., 79%) as brown/yellow crystals. ¹H NMR (400 MHz, CDCl₃): δ 0.92 (d, 3H, J = 6.9 Hz, H^{k/l}), 0.95 (d, 3H, J = 6.9 Hz, H^{k/l}), 2.04 (s, 3H, H^p), 2.43 (sept, 1H, J = 6.9 Hz, H^j), 5.07 (brd, 1H, J = 5.8 Hz,

H^{n/q}), 5.27 (dd, 1H, J= 0.9, 5.9 Hz, H^{m/r}), 5.54 (brd, 2H, J = 6.0 Hz, H^{m/r/n/q}), 6.44 (t, 1H, J = 2.5 Hz, H^b), 7.01 (td, 1H, J = 1.3, 7.5 Hz, H^e), 7.09 (td, 1H, J= 1.3, 7.3 Hz, H^f), 7.15 (dd, 1H, J = 1.2, 7.7 Hz, H^d), 7.89 (brd, 1H, J = 2.8 Hz, H^e), 8.04 (dd, 1H, J = 0.3, 2.1 Hz, H^a), 8.13 (dd, 1H, J = 1.2, 7.3 Hz, H^g). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 18.7 (C^p), 21.9 (C^{k/l}), 22.3 (C^{k/l}), 30.6 (C^j), 82.1 (C^{n/q}), 84.0 (C^{m/r}), 88.1 (C^{m/r/n/q}), 88.5 (C^{m/r/n/q}), 100.0 (C^{s+o}), 108.2 (C^b), 111.4 (C^d), 123.1 (C^e), 124.8 (C^c), 125.8 (C^f), 140.1 (C^g), 141.8 (Cⁱ), 142.1 (C^a), 161.8 (C^h) Accurate MS-ESI *m/z* 379.0752 and 420.1014 (calculated), 379.0763 and 420.1015 (found), [M–Cl]⁺ and [M–Cl + (MeCN)]⁺ respectively C₁₉H₂₁N₂¹⁰²Ru and C₂₁H₂₄N₃¹⁰²Ru.

Cyclometallation of 1-(4-N,N-dimethylamine)-1*H*-pyrazole (L1-NMe₂) with [RuCl₂(*p*-cymene)]₂

The general procedure was followed using $[RuCl_2(p-cymene)]_2$ (50 mg., 0.081 mmol), 1-(4-N,N-dimethylamine)-1*H*-pyrazole (30.5 mg., 0.163 mmol) and NaOAc (13.7 mg., 0.167 mmol) in dry MeOH (5 ml) and the mixture was stirred for 3 hours at room temperature. The product was precipitated from THF / petroleum ether to give **1-NMe**₂ (47 mg., 62%) as brown/yellow crystals. ¹H NMR (400 MHz, CDCl₃): δ 0.93 (d, 3H, *J* = 6.9 Hz, H^{k/l}), 2.01 (s, 3H, H^p), 2.46 (sept, 1H, *J* =

6.9 Hz, H^j), 3.01 (s, 6H, NMe₂), 5.06 (brd, 1H, J = 5.7 Hz, H^{n/q}), 5.26 (brd, 1H, J = 5.7 Hz, H^{m/r}), 5.47 (brd, 1H, J = 5.8 Hz, H^{n/q}), 5.53 (brd, 1H, J = 5.8 Hz, H^{m/r}), 6.37 (t, 1H, J = 2.3 Hz, H^b), 6.41 (dd, 1H, J = 2.5, 8.6 Hz, H^e), 7.04 (d, 1H, J = 8.6 Hz, H^d), 7.55 (d, 1H, J = 2.6 Hz, H^g), 7.75 (brd, 1H, J = 2.5 Hz, H^e), 7.96 (brd, 1H, J = 1.9 Hz, H^a). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 18.8 (C^p), 21.8 (C^{k/l}), 22.5 (C^{k/l}), 30.6 (C^j), 41.3 (NMe₂), 82.4 (C^{n/q}), 84.0 (C^{m/r}), 87.9 (C^{n/q}), 88.4 (C^{m/r}), 9.3 (C^s), 99.8 (C^o), 107.6 (C^b), 108.1 (C^e), 111.6 (C^d), 123.6 (C^c), 123.8 (C^g), 133.6 (Cⁱ), 141.0 (C^a), 148.7 (C^f), 162.8 (C^h) Accurate MS-ESI *m/z* 422.1170 and 463.1436 (calculated), 422.1163 and 463.1431 (found), [M–Cl]⁺ and [M–Cl + (MeCN)]⁺ respectively C₂₁H₂₆N₃¹⁰²Ru and C₂₃H₂₉N₄¹⁰²Ru.

Cyclometallation of 1-(4-methoxyphenyl)-1*H*-pyrazole (L1-OMe) with [RuCl₂(*p*-cymene)]₂

The general procedure was followed using $[RuCl_2(p-cymene)]_2$ (100 mg., 0.163 mmol), 1-(4-methoxyphenyl)-1*H*-pyrazole (56.9 mg., 0.327 mmol) and NaOAc (26.8 mg., 0.327 mmol) in dry MeOH (10 ml) and the mixture was stirred for 24 hours at room temperature. The product was precipitated from DCM / petroleum ether to give **1-OMe** (89 mg., 61%) as brown/yellow crystals. ¹H NMR (400 MHz, CDCl₃): δ 0.92 (d, 3H, *J* = 6.9 Hz, H^{k/l}), 0.95 (d, 3H, *J* = 6.9 Hz, H^{k/l}), 2.03 (s, 3H, H^p), 2.43 (sept, 1H, *J* = 6.9 Hz, H^j),

3.86 (s, 3H, OMe), 5.07 (brd, 1H, J = 5.9 Hz, H^{n/q}), 5.28 (brd, 1H, J = 5.7 Hz, H^{m/r}), 5.52 (brd, 2H, J = 5.9 Hz, H^{m/r/n/q}), 6.40 (t, 1H, J = 2.4 Hz, H^b), 6.53 (dd, 1H, J = 2.6, 8.5 Hz, H^e), 7.08 (d, 1H, J = 8.5 Hz, H^d), 7.69 (d, 1H, J = 2.8 Hz, H^g), 7.80 (brd, 1H, J = 2.6 Hz, H^e), 7.99 (brd, 1H, J = 2.0 Hz, H^a). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 18.8 (C^p), 21.9 (C^{k/l}), 22.4 (C^{k/l}), 30.6 (C^j), 55.5 (OMe), 82.3 (C^{n/q}), 84.2 (C^{m/r}), 88.1 (C^{m/r/n/q}), 88.5 (C^{m/r/n/q}), 99.9 (C^s), 100.0 (C^o), 108.0 (C^{b/e}), 108.0 (C^{b/e}), 111.7 (C^d), 124.3 (C^c), 125.4 (C^g), 136.2 (Cⁱ), 141.6 (C^a), 156.9 (C^f), 163.5 (C^h). Accurate MS-ESI *m/z* 409.0845, 450.1119 and 398.0555 (calculated), 409.0860, 450.1126 and 398.0526 (found), [M–Cl]⁺, [M–Cl + (MeCN)]⁺ and [M–Cl – (*p*-cymene) + 3(MeCN)]⁺respectively C₂₀H₂₃N₂O¹⁰²Ru, C₂₂H₂₆N₃O¹⁰²Ru and C₁₆H₁₈N₅O¹⁰²Ru.

Cyclometallation of 1-(4-methylphenyl)-1*H*-pyrazole (L1-Me) with [RuCl₂ (*p*-cymene)]₂.

The general procedure was followed using $[RuCl_2(p-cymene)]_2$ (50 mg., 0.081 mmol), 1-(4-methylphenyl)-1*H*-pyrazole (26.0 mg., 0.164 mmol) and NaOAc (13.7 mg., 0.167 mmol) in dry MeOH (5 ml) and the mixture was stirred for 5 hours at room temperature. The product was precipitated from DCM / petroleum ether to give **1-Me** (37 mg., 53%) as brown/yellow crystals. ¹H NMR (400 MHz, CDCl₃): δ 0.93 (d, 3H, *J* = 6.9 Hz, H^{k/l}), 0.94 (d, 3H, *J* = 6.9 Hz, H^{k/l}), 2.05 (s, 3H, H^p), 2.39 (s, 3H, Me), 2.42 (sept, 1H,

J = 6.9 Hz, H^j), 5.09 (dd, 1H, J = 0.9, 5.8, H^{n/q}), 5.31 (dd, 1H, J = 1.0, 6.1, H^{m/r}), 5.54 (overlapping d, 2H, H^{m/r/n/q}), 6.45 (t, 1H, J = 2.5 Hz, H^b), 6.82 (dd, 1H, J = 1.1, 7.9 Hz, H^e), 7.06 (d, 1H, J = 7.9 Hz,

H^d), 7.86 (dd, 1H, J = 0.5, 2.7 Hz, H^c), 7.94 (brd, 1H, J = 1.0, H^g), 8.03 (dd, 1H, J = 0.5, 2.2 Hz, H^a). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 18.8 (C^p), 21.4 (Me) 22.0 (C^{k/I}), 22.3 (C^{k/I}), 30.7 (C^j), 82.0 (C^{n/q}), 84.3 (C^{m/r}), 87.8 (C^{m/r/n/q}), 88.8 (C^{m/r/n/q}), 99.8 (C^{s+o}), 108.0 (C^b), 111.0 (C^d), 123.9 (C^e), 124.5 (C^c), 135.2 (C^f), 139.6 (Cⁱ), 140.6 (C^g), 141.8 (C^a), 161.6 (C^h). Accurate MS-ESI *m/z* 393.0905, 434.1170 and 382.0606 (calculated), 393.0911, 434.1178 and 382.0602 (found), [M–Cl]⁺, [M–Cl + (MeCN)]⁺ and [M–Cl – (*p*-cymene) + 3(MeCN)]⁺ respectively C₂₀H₂₃N₂¹⁰²Ru , C₂₂H₂₆N₃¹⁰²Ru and C₁₆H₈N₅¹⁰²Ru.

Cyclometallation of 1-(4-fluoromethylphenyl)-1*H*-pyrazole (L1-F) with [RuCl₂(*p*-cymene)]₂

The general procedure was followed using $[RuCl_2(p-cymene)]_2$ (50 mg., 0.081 mmol), 1-(4-fluoromethylphenyl)-1H-pyrazole mmol) and NaOAc (13.7 mg., 0.167 mmol) in dry MeOH (5 ml) and the mixture was stirred for 21 hours at room temperature. The product was precipitated from DCM / petroleum ether to give **1-F** (47 mg., 66%) as brown/yellow crystals. ¹H NMR (500 MHz, CDCl₃): δ 0.91 (d, 3H, *J* = 6.9 Hz, H^{k/l}), 0.94 (d, 3H, *J* = 6.9 Hz, H^{k/l}), 2.05 (s, 3H, H^p), 2.42 (sept, 1H, *J*

= 6.9 Hz, H^j), 5.07 (brd, 1H, J = 5.7 Hz, H^{n/q}), 5.29 (brd, 1H, J = 5.7 Hz, H^{m/r}), 5.53 (brd, 1H, J = 6.0 Hz, H^{m/r/n/q}), 5.55 (brd, 1H, J = 6.0 Hz, H^{m/r/n/q}), 6.42 (t, 1H, J = 2.4 Hz, H^b), 6.67 (dt, 1H, $J_{H-H} = 2.7$, $J_{H-F} = 8.6$ Hz, H^e), 7.09 (dd, 1H, $J_{H-F} = 4.5$, $J_{H-H} = 8.5$ Hz, H^d), 7.80 (brd, 1H, J = 2.7 Hz, H^e), 7.82 (overlapping d, 1H, H^g), 8.01 (brd, 1H, J = 2.1 Hz, H^a). ¹³C {¹H} NMR (125 MHz, CDCl₃): δ 18.8 (C^p), 21.9 (C^{k/l}), 22.3 (C^{k/l}), 30.6 (C^j), 82.2 (C^{n/q}), 84.5 (C^{m/r}), 88.1 (C^{m/r/n/q}), 88.7 (C^{m/r/n/q}), 100.3 (C^s), 100.7 (C^s), 108.0 (C^b), 109.7 (d, ² $_{JCF} = 24.4$ Hz, C^e), 112 (d, ³ $_{JCF} = 8.5$ Hz, C^d), 125.1 (C^c), 125.9 (d, ² $_{JCF} = 19.0$ Hz, C^g), 138.2 (Cⁱ), 142.2 (C^a), 160.0 (d, ¹ $_{JCF} = 247.6$ Hz, C^f), 164.7 (d, ³ $_{JCF} = 3.8$ Hz, C^h). ¹⁹F {¹H} NMR (376 MHz, CDCl₃): δ -117.7 (s, F). ¹⁹F NMR (376 MHz, CDCl₃): Accurate MS-ESI *m/z* 397.0654 and 438.0920 (calculated), 397.0661 and 438.0920 (found), [M–Cl]⁺ and [M–Cl + (MeCN)]⁺ respectively C₁₉H₂₀FN₂¹⁰²Ru and C₂₁H₂₃FN₃¹⁰²Ru.

Cyclometallation of 1-(4-trifluoromethylphenyl)-1*H*-pyrazole (L1-CF₃) with [RuCl₂(*p*-cymene)]₂

The general procedure was followed using $[RuCl_2(p-cymene)]_2$ (50 mg., 0.081 mmol), 1-(4-trifluoromethylphenyl)-1*H*-pyrazole (34.7 gm., 0.164 mmol) and NaOAc (13.7 mg., 0.167 mmol) in dry MeOH (5 ml) and the mixture was stirred for 79 hours at room temperature. The product was precipitated from DCM / petroleum ether to give **1-CF**₃ (42 mg., 54%) as brown/yellow crystals.¹H NMR (400 MHz, CDCl₃): δ 0.92 (d, 3H, *J* = 6.9 Hz, H^{k/l}), 0.96 (d, 3H, *J* = 6.9 Hz, H^{k/l}), 2.07 (s, 3H, H^p), 2.42 (sept, 1H, *J*

=6.9 Hz, H^j), 5.10 (brd, 1H, J = 5.8 Hz, H^{n/q}), 5.32 (brd, 1H, J = 6.0 Hz, H^{m/r}), 5.58 (overlapping d, 2H, H^{m/r/n/q}), 6.50 (t, 1H, J = 2.4 Hz, H^b), 7.20 (d, 1H, J = 8.2 Hz, H^d), 7.27 (brd, 1H, J = 8.2 Hz, H^e), 7.94 (brd, 1H, J = 2.7 Hz, H^c), 8.08 (brd, 1H, J = 1.9 Hz, H^a), 8.35 (brs, 1H, H^g). ¹³C{¹H} NMR (125)

MHz, CDCl₃): δ 18.8 (C^p), 22.0 (C^{k/l}), 22.3 (C^{k/l}), 30.7 (C^j), 82.0 (C^{n/q}), 84.5 (C^{m/r}), 88.2 (C^{m/r/n/q}), 88.8 (C^{m/r/n/q}), 100.8 (C^s), 101.0 (C^o), 109.0 (C^b), 111.0(C^d), 120.8 (q, ${}^{3}J_{CF} = 3.8$ Hz, C^e), 122.5 (q, ${}^{1}J_{CF} = 275.9$ Hz, CF₃), 125.7 (C^o), 127.2 (q, ${}^{2}J_{CF} = 31.4$ Hz, C^f), 136.4 (q, ${}^{3}J_{CF} = 3.3$ Hz, C^g), 143.0 (C^a), 144.3 (Cⁱ), 162.3 (C^h). ¹⁹F {¹H} NMR (376 MHz, CDCl3): δ -61.4 (s, CF₃). Accurate MS-ESI *m/z* 447.0622, 488.0888 and 436.0323 (calculated), 447.0652, 488.0907 and 436.0322 (found), [M–Cl]⁺, [M–Cl + (MeCN0]⁺ and [M–Cl – (*p*-cymene) + 3(MeCN)]⁺ respectively C₂₀H₂₀F₃N₂¹⁰²Ru, C₂₂H₂₃F₃N₃¹⁰²Ru and C₁₆H₁₅F₃N₅¹⁰²Ru .

Cyclometallation of 1-(4-nitrophenyl)-1*H*-pyrazole (L1-NO₂) with [RuCl₂(*p*-cymene)]₂

The general procedure was followed using $[\text{RuCl}_2(p\text{-cymene})]_2$ (50 mg., 0.081 mmol), 1-(4-nitrophenyl)-1*H*-pyrazole (30.8 mg., 0.163) and NaOAc (13.7 mg., 0.167 mmol) in mixture of in dry MeOH (5 ml) and dry DCM (3 ml). The mixture was stirred for 96 hours at 40 °C. The product was precipitated from DCM / petroleum ether to give **1-NO**₂ (38 mg., 51%) as brown/yellow crystals. ¹H NMR (400 MHz, CDCl₃): δ 0.93 (d, 3H, *J* = 6.9 Hz, H^{k/l}), 0.96 (d, 3H, *J* = 6.9 Hz, H^{k/l}), 2.11 (s, 3H, H^p), 2.43 (sept, 1H, *J* =

6.9 Hz, H^j), 5.19 (dd, 1H, J = 0.7, 5.8 Hz, H^{n/q}), 5.38 (dd, 1H, J = 0.7, 6.0 Hz, H^{m/r}), 5.62 (brd, 1H, J = 6.3 Hz, H^{m/r/n/q}), 5.65 (brd, 1H, J = 6.2 Hz, H^{m/r/n/q}), 6.56 (t, 1H, J = 2.4 Hz, H^b), 7.24 (d, 1H, J = 8.6 Hz, H^d) 7.93 (dd, 1H, J = 2.4, 8.6 Hz, H^e), 7.98 (brd, 1H, J = 2.7 Hz, H^c), 8.14 (brd, 1H, J = 2.0 Hz, H^a), 8.96 (d, 1H, J = 2.4 Hz, H^g). ¹³C {¹H} NMR (125 MHz, CDCl₃): δ 18.8 (C^p), 22.0 (C^{k/l}), 22.3 (C^{k/l}), 30.7 (C^j), 82.4 (C^{n/q}), 84.9 (C^{m/r}), 88.2 (C^{m/r/n/q}), 89.1 (C^{m/r/n/q}), 101.1 (C^{s/o}), 101.5 (C^{s/o}), 109.8 (C^b), 111.0 (C^d), 119.9 (C^e), 126.4 (C^c), 134.6 (C^g), 143.8 (C^a), 144.9 (Cⁱ), 146.4 (C^f), 163.5 (C^h). Accurate MS-ESI *m/z* 424.0599, 465.0864 and 413.0300 (calculated), 424.0585, 465.0865 and 413.0261 (found), [M–Cl]⁺, [M–Cl + (MeCN)]⁺ and [M–Cl – (*p*-cymene) + 3(MeCN)]⁺ respectively C₁₉H₂₀N₃O₂¹⁰²Ru, C₂₁H₂₃N₄O₂¹⁰²Ru and C₁₅H₁₅N₆O₂¹⁰²Ru.

Cyclometallation of 1-(3-N,N-dimethylamine)-1*H*-pyrazole (L2-NMe₂) with [RuCl₂(*p*-cymene)]₂

The general procedure was followed using $[RuCl_2(p-cymene)]_2$ (50 mg., 0.081 mmol), 1-(3-N,N- dimethylamine)-1H-pyrazole (30.5 mg., 0.163 mmol) and NaOAc (13.7 mg., 0.167 mmol) in dry MeOH (5 ml). The mixture was stirred for 5 hours at room temperature. The product was precipitated from THF / petroleum ether to give **3-NMe**₂ (45 mg., 60%) as brown/yellow crystals. ¹H NMR (400 MHz, CDCl₃) : δ 0.93 (d, 3H, J = 6.9, H^{k/l}), 0.97 (d, 3H, J = 6.9 Hz, H^{k/l}), 2.02 (s, 3H, H^p),

2.45 (sept, 1H, J = 6.9 Hz, H^j), 2.90 (s, 6H, NMe₂), 5.04 (brd, 1H, J = 5.7 Hz, H^{n/q}), 5.25 (brd, 1H, J = 5.8 Hz, H^{m/r}), 5.5 (d, 1H, J = 5.8 Hz H^{n/q}), 5.53 (d, 1H, J = 5.7 Hz H^{m/r}), 6.43 (t, 1H, J = 2.4 Hz, H^b), 6.63 (d, 1H, J = 2.4 Hz, H^d), 6.67 (dd, 1H, J = 2.4, 8.5 Hz, H^f), 7.89 (d, 1H, J = 2.7 Hz, H^c), 7.94 (d,

1H, J = 8.2 Hz, H^g), 8.04 (d, 1H, J = 2.0 Hz, H^a). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 18.8 (C^p), 21.9 (C^{k/l}), 22.5 (C^{k/l}), 30.7 (C^j), 41.4 (NMe₂), 81.8 (C^{n/q}), 83.5 (C^{m/r}), 87.9 (C^{m/r/n/q}), 88.0 (C^{m/r/n/q}), 98.0 (C^d), 99.2 (C^s), 99.6 (C^o), 107.9 (C^b), 112.9 (C^f), 124.7 (C^c), 139.7 (C^g), 142.0 (C^a), 142.0 (C^{h/i}), 147.2 (C^{h/i}), 148.2 (C^e). Accurate MS-ESI *m/z* 422.1170 (calculated), 422.1156 (found), [M–Cl]⁺ C₂₁H₂₆N₃¹⁰²Ru.

Cyclometallation of 1-(3-methoxyphenyl)-1*H*-pyrazole (L2-OMe) with [RuCl₂(*p*-cymene)]₂

Isomer 2-OMe (ortho)

The general procedure was followed using $[RuCl_2(p-cymene)]_2$ (50 mg., 0.081 mmol), 1-(3-methoxyphenyl)-1H-pyrazole (28.6 mg., 0.164 mmol) and NaOAc (13.7 mg., 0.167 mmol) were added in dry MeOH (10 ml). The mixture was stirred for 21 hours at room temperature. The product was precipitated from DCM / petroleum ether to give a mixture of **2-OMe** and **3-OMe** (41 mg., 56%) as brown/yellow crystals.¹H NMR (400 MHz, CDCl₃): δ 0.82 (d, 3H, J = 6.9 Hz, H^{k/l}), 0.84 (d, 3H, J = 6.9 Hz, H^{k/l}), 2.11

(s, 3H, H^p), 2.24 (sept, 1H, J = 6.9 Hz, H^j), 3.93 (s, 3H, OMe), 5.24 (dd, 1H, J = 1.2, 5.7 Hz, H^{m/r/n/q}), 5.39 (dd, 1H, J = 1.0, 6.0 Hz, H^{m/r}), 5.80 (dd, 1H, J = 1.0, 6.0 Hz, H^{n/q}), 5.95 (dd, 1H, J = 1.1, 5.7 Hz, H^{m/r}), 6.43 - 6.44 (m, 1H, H^b), 6.72 (dd, J = 0.8, 8.0 Hz, 1H, H^f), 6.90 (dd. J = 0.9,7.8 Hz, 1H, H^d), 7.03 (t, 1H, J = 7.9 Hz, H^e), 7.88 (dd, 1H, J = 0.3, 2.7 Hz, H^c), 8.04 (overlapping d, H^a). ¹³C {¹H} NMR (125 MHz, CDCl₃): δ 19.0 (C^p), 22.2(C^{k/l}), 22.3 (C^{k/l}), 30.8 (C^j), 56.8 (OMe), 79.6 (C^{m/r/n/q}), 85.6(C^{m/r}), 86.1(C^{m/r}), 88.7 (C^{n/q}), 98.1 (C^s), 103.1 (C^o), 105.7 (C^d), 108.2 (C^b), 109.1 (C^f), 124.5 (C^e), 125.3 (C^c), 142.2 (C^a), 143.0 (C^{h/i}), 148.4 (C^{h/i}), 165.8 (C^g). Accurate MS-ESI *m/z* 409.0845 and 450.1119 (calculated), 409.0849 and 450.1125 (found), [M–Cl]⁺ and [M–Cl + (MeCN)]⁺ respectively C₂₀H₂₃N₂O¹⁰²Ru and C₂₂H₂₆N₃O¹⁰²Ru.

Isomer 3-OMe (para)

¹H NMR (400 MHz, CDCl₃): δ 0.91 (d, 3H, J = 6.9 Hz, H^{k/l}), 0.96 (d, 3H, J = 6.9 Hz, H^{k/l}), 2.04 (s, 3H, H^p), 2.43 (sept, 1H, J = 6.9 Hz, H^j), 3.78 (s, 3H, OMe), 5.03 (dd, 1H, J = 0.8, 5.9 Hz, H^{n/q}), 5.24 (dd, 1H, J = 1.2, 5.7 Hz, H^{m/r/n/q}), 5.53 (overlapping d, 2H, H^{m/r/n/q}), 6.43 - 6.44 (m, 1H, H^b), 6.75 (dd, 1H, J = 2.5Hz, 8.0, H^f), 6.77 (d, 1H, J = 2.4 H^d), 7.86 (brd, 1H, J = 2.6 Hz, H^c), 7.98 (d, 1H, J = 8.0 Hz, H^g), 8.04 (overlapping d, H^a). ¹³C {¹H} NMR (125 MHz, CDCl₃):

δ 18.8 (C^p), 21.9 (C^{k/l}), 22.4 (C^{k/l}), 30.7 (C^j), 55.6 (OMe), 81.7 (C^{n/q}), 83.6 (C^{m/r/n/q}), 87.9 (C^{m/r/n/q}), 88.3 (C^{m/r/n/q}), 98.9 (C^{d/f}), 99.8(C^s), 99.9 (C^o), 108.3 (C^b), 112.1 (C^{d/f}), 125.1 (C^c), 139.9 (C^g isomer A), 141.8 (C^{h/i}), 142.3 (C^a), 150.7 (C^{h/i}), 156.8 (C^e). Accurate MS-ESI *m/z* 409.0845 and 450.1119 (calculated), 409.0849 and 450.1125 (found), [M–Cl]⁺ and [M–Cl + (MeCN)]⁺ respectively C₂₀H₂₃N₂O¹⁰²Ru and C₂₂H₂₆N₃O¹⁰²Ru.

Cyclometallation of 1-(3-methylphenyl)-1H-pyrazole (L2-Me) with [RuCl₂(p-cymene)]₂

The general procedure was followed using $[RuCl_2(p-cymene)]_2$ (50 mg., 0.081 mmol), 1-(3-methylphenyl)-1H-pyrazole (26.0 mg., 0.164 mmol) and NaOAc (13.7 mg., 0.167 mmol) in dry MeOH (5 ml). The mixture was stirred for 24 hours at room temperature. The product was precipitated from DCM / petroleum ether to give **3-Me** (39 mg., 55%) as brown/yellow crystals. ¹H NMR (400 MHz, CDCl₃) : δ 0.92 (d, 3H, J = 6.9, H^{k/l}), 0.97 (d, 3H, J = 6.9 Hz, H^{k/l}), 2.03 (s, 3H, H^p), 2.33(s, 3H,

Me), 2.44 (sept, 1H, J = 7.0 Hz, H^j), 5.06 (brd, 1H, J = 5.4 Hz, H^{n/q}), 5.26 (brd, 1H, J = 5.8 Hz, H^{m/r}), 5.53 (overlapping d, 2H, H^{m/r/n/q}), 6.44 (t, 1H, J = 2.4 Hz, H^b), 6.93 (dd, 1H, J = 0.8, 7.5 Hz, H^f), 6.99 (brs, 1H, H^d), 7.88 (brd, 1H, J = 2.7 Hz, H^c), 7.99 (d, 1H, J = 7.6 Hz, H^g), 8.03 (brd, 1H, J = 2.0 Hz, H^a). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 18.8 (C^p), 21.04 (Me), 21.9 (C^{k/l}), 22.4 (C^{k/l}), 30.7 (C^j), 82.1 (C^{n/q}), 83.8 (C^{m/r}), 88.1 (C^{m/r/n/q}), 88.3 (C^{m/r/n/q}), 99.5 (C^s), 100.1 (C^o), 108.1(C^b), 112.3 (C^d), 124.7 (C^c), 127.1 (C^f), 132.7 (C^e), 139.7 (C^g), 141.7 (Cⁱ), 142.0 (C^a), 157.4 (C^h). Accurate MS-ESI *m/z* 393.0905 and 434.1170 (calculated), 393.0912 and 434.1178 (found), [M–Cl]⁺ and [M–Cl + (MeCN)]⁺ respectively C₂₀H₂₃N₂¹⁰²Ru and C₂₂H₂₆N₃¹⁰²Ru.

Cyclometallation of 1-(3-fluoromethylphenyl)-1H-pyrazole (L2-F) with [RuCl₂ (p-cymene)]₂

Isomer 2-F (ortho)

The general procedure was followed using $[RuCl_2(p-cymene)]_2(50 \text{ mg.}, 0.081 \text{ mmol})$, 1-[(3-fluoromethyl]phenyl)-1*H*-pyrazole (26.4 mg., 0.163 mmol) and NaOAc (13.7 mg., 0.167 mmol) in dry MeOH (5 ml). The mixture was stirred for 5 hours at room temperature. The product was precipitated from DCM / petroleum ether to give **2-F** and **3-F** (59 mg., 84%) as brown/yellow crystals. Recrystallisation gave a sample of pure **2-F**. ¹H NMR (400 MHz, CDCl₃): δ 0.88 (d, 3H, J = 6.8 Hz, H^{k/l}), 0.89 (d,

3H, J = 6.8 Hz, H^{k/l}), 2.12 (s, 3H, H^p), 2.33 (sept, 1H, J = 6.9 Hz, H^j), 5.32 (brd, 1H, J = 5.8 Hz, H^{n/q}), 5.47 (brd, 1H, J = 6.0 Hz, H^{m/r}), 5.79 (brd, 1H, J = 5.9 H^{n/q}), 5.88 (brd, 1H, J = 5.8 H^{m/r}), 6.47 (t, 1H, J = 2.5 Hz, H^b), 6.83 – 6.90 (m, 1H, J = Hz, H^f), 6.97 – 7.02 (m, 2H, H^{d/e}), 7.90 (brd, 1H, J = 2.7 Hz, H^c), 8.05 (brd, 1H, J = 2.0 Hz, H^a). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 19.0 (C^p), 22.1 (C^{k/l}), 22.3 (C^{k/l}), 30.8 (C^j), 79.8 (d, $J_{CF} = 2.8$ Hz, C^{n/q}), 85.5 (C^{m/r}), 85.7 (d, $J_{CF} = 3.8$ Hz, C^{m/r}), 88.7 (C^{n/q}), 99.6 (C^s), 102.5 (C^o), 107.7 (C^d), 108.6 (C^b), 112.3 (d, ² $J_{CF} = 30.5$ Hz, C^f), 124.7 (d, ³ $J_{CF} = 8.7$ Hz, C^e), 125.6 (C^c), 142.5 (C^a), 143.6 (d, ² $J_{CF} = 50.2$, Hz, C^h), 144.0 (d, ³ $J_{CF} = 19.4$ Hz, Cⁱ), 169.0 (d, ¹ $J_{CF} = 232$ Hz, C^g). ¹⁹F {¹H} NMR (376 MHz, CDCl₃): δ -91.5 (s, F). Accurate MS-ESI *m/z* 397.0654, 432.0343, 303.9824 and 345.0089 (calculated), 397.0670, 432.0364, 303.9826 and 345.0081 (found), [M–Cl]⁺, $[M]^{+}, [M-Cl - (p-cymene) + (MeCN)] \text{ and } [M-Cl - (p-cymene) + 2(MeCN)]C_{19}H_{20}FN_2^{102}Ru, C_{19}H_{20}FN_2^{102}RuCl, C_{11}H_9FN_3^{102}Ru \text{ and } C_{13}H_{12}FN_4^{102}Ru.$

Isomer 3-F

¹H NMR (400 MHz, CDCl₃): δ 0.91 (d, 3H, J = 6.9 Hz, H^{k/l}), 0.96 (d, 3H, J = 6.9 Hz, H^{k/l}), 2.05 (s, 3H, H^p), 2.43 (sept, 1H, J = 6.9 Hz, H^j), 5.04 (dd, 1H, J = 0.8, 5.8 Hz, H^{n/q}), 5.26(dd, 1H, J = 0.8, 5.8 Hz, H^{m/r}), 5.55 (overlapping d, 2H, H^{n/q/m/r}), 6.46 – 6.48 (m, 1H, H^b), 6.83 – 6.93 (m, 2H, J = Hz, H^{d+f}), 7.85 (brd, 1H, J = 2.5 Hz, H^c), 8.20 (dd, 1H, $J_{H-F} = 6.4$, $J_{H-H} = 8.2$, Hz, H^g), 8.05 (overlapping d, 1H, H^a). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 18.8 (C^p), 21.9 (C^{k/l}), 30.7 (C^j), 81.7 (C^{n/q}), 83.9

 $(C^{m/r})$, 88.0 $(C^{n/q/m/r})$, 88.5 $(C^{n/q/m/r})$, 99.6 $(d, {}^{2}J_{CF} = 25.6 C^{d/f})$, 102.2 $(C^{s/o})$, 100.5 $(C^{s/o})$, 108.7 (C^{b}) , 112.8 $(d, {}^{2}J_{CF} = 19.1 Hz, C^{d/f})$, 125.3 (C^{c}) , 142.7 (C^{a}) , 143.9 $(d, {}^{3}J_{CF} = 19.1 Hz, C^{i})$, $C^{k/l}$, C^{e} , C^{g} and C^{h} signals are difficult to see due to hidden under major *ortho* isomer (**2-F**). ¹⁹F {¹H} NMR (376 MHz, CDCl₃): δ -121.3 (s, F). Accurate MS-ESI *m/z* 397.0654, 432.0343, 303.9824 and 345.0089 (calculated), 397.0670, 432.0364, 303.9826 and 345.0081 (found), $[M-Cl]^{+}$, $[M]^{+}$, [M-Cl - p-cymene + MeCN] and [M-Cl - (p-cymene) + 2(MeCN)] C₁₉H₂₀FN₂¹⁰²Ru, C₁₉H₂₀FN₂¹⁰²RuCl, C₁₁H₉FN₃¹⁰²Ru and C₁₃H₁₂FN₄¹⁰²Ru.

Cyclometallation of 1-(3-trifluoromethylphenyl)-1*H*-pyrazole (L2-CF₃) with [RuCl₂ (*p*-cymene)]₂

The general procedure was followed using $[RuCl_2(p-cymene)]_2$ (50 mg., 0.081 mmol), 1-[(3 trifluoromethyl]phenyl)-1*H*-pyrazole (34.7 mg., 0.163 mmol) and NaOAc (16.4 mg., 0.2 mmol) in dry MeOH (5 ml). The mixture was stirred for 85 hours at room temperature. The product was precipitated from DCM / petroleum ether to give **3**-**CF**₃ (41 mg., 52%) as brown/yellow crystals. ¹H NMR (400 MHz, CDCl₃): δ 0.93 (d, 3H, J = 6.9 Hz, H^{k/l}), 0.97 (d, 3H, J = 6.9 Hz,

H^{k/l}), 2.06 (s, 3H, H^p), 2.44 (sept, 1H, J = 6.9 Hz, H^j), 5.10 (brd, 1H, J = 5.8 Hz, H^{n/q}), 5.32 (brd, 1H, J = 5.8 Hz, H^{m/r}), 5.58 (overlapping d, 2H, J = 5.1, 5.4 H^{m/r/n/q}), 6.52 (t, 1H, J = 2.3 Hz, H^b), 7.32 (brd, 1H, J = 8.2 Hz, H^f), 7.35 (brs, 1H, H^d), 7.97 (brd, 1H, J = 2.7 Hz, H^c), 8.08 (brd, 1H, J = 2.0 Hz, H^a), 8.24 (d, 1H, J = 7.7, H^g). ¹³C {¹H} NMR (125 MHz, CDCl₃): δ 18.7 (C^p), 21.9 (C^{k/l}), 22.3 (C^{k/l}), 30.6 (C^j), 82.5 (C^{n/q}), 84.6 (C^{m/r}), 88.2 (C^{m/r/n/q}), 88.9 (C^{m/r/n/q}), 100.7 (C^s), 101.1 (C^o), 107.7 (q, ³ $_{CF} = 3.7$ Hz, C^d), 108.9 (C^b), 122.0 (q, ³ $_{CF} = 3.3$ Hz, C^f), 124.7 (q, ¹ $_{CF} = 271.4$ Hz, CF₃), 125.5 (q, ² $_{CF} = 32.4$ Hz, C^e), 125.5 (C^c), 141.9 (Cⁱ), 140.4 (C^g), 142.9 (C^a), 168.7 (C^h). ¹⁹F {¹H} NMR (376 MHz, CDCl₃): δ - 61.7 (s, CF₃). Accurate MS-ESI *m/z* 447.0622, 488.0888 and 436.0323(calculated), 447.0653, 488.0915

and 436.0331 (found), $[M-Cl]^+$, $[M-Cl + (MeCN)]^+$ and [M-Cl - p-cymene + 3xMeCN]⁺ respectively $C_{20}H_{20}F_3N_2^{102}Ru$, $C_{22}H_{23}F_3N_3^{102}Ru$ and $C_{16}H_{15}F_3N_5^{102}Ru$.

Cyclometallation of 1-(3-nitrophenyl)-1*H*-pyrazole (L2-NO₂) with [RuCl₂(*p*-cymene)]₂

The general procedure was followed using $[\text{RuCl}_2(p\text{-cymene})]_2$ (50 mg., 0.081 mmol), 1-[(3-nitrophenyl)-1*H*-pyrazole (31.0 mg., 0.163 mmol) and NaOAc (13.7 mg., 0.167 mmol) in dry MeOH (5 ml). The mixture was stirred for 85 hours at room temperature. The product was precipitated from DCM / petroleum ether to give **3-NO**₂ (39 mg., 52%) as brown/yellow crystals. ¹H NMR (400 MHz, CDCl₃): δ 0.93 (d, 3H, *J*

= 6.9 Hz, H^{k/l}), 0.97 (d, 3H, J = 6.9 Hz, H^{k/l}), 2.09 (s, 3H, H^p), 2.44 (sept, 1H, J = 6.9 Hz, H^j), 5.14 (brd, 1H, J = 5.8 Hz, H^{n/q}), 5.35 (brd, 1H, J = 5.9 Hz, H^{m/r}), 5.60 (brd, 1H, J = 5.9 Hz, H^{m/r}), 5.64 (brd, 1H, J = 6.0 Hz, H^{n/q}), 6.58 (t, 1H, J = 2.4 Hz, H^b), 7.95 (dd, 1H, J = 2.1, 8.2 Hz, H^f), 8.00 (d, 1H, J = 2.2 Hz, H^d), 8.06 (brd, 1H, J = 2.8 Hz, H^c), 8.10 (brd, 1H, J = 2.1 Hz, H^a), 8.30 (d, 1H, J = 8.2 Hz, H^g). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 18.8 (C^p), 22.0 (C^{k/l}), 22.3(C^{k/l}), 30.7 (C^j), 82.8 (C^{n/q}), 85.1 (C^{m/r}), 88.6 (C^{m/r}), 89.5 (C^{n/q}), 101.9 (C^s), 101.9 (C^o), 105.6 (C^d), 109.4 (C^b), 119.8 (C^f), 126.0 (C^c), 140.3 (C^g), 142.2 (C^{e/i}), 143.3 (C^a), 144.8 (C^{e/i}), 177.6 (C^h). Accurate MS-ESI *m/z* in MeCN 413.0300 (calculated), 413.0299 (found), [M–Cl – (*p*-cymene) + 3(MeCN)]⁺ C₁₅H₁₅N₆O₂¹⁰²Ru whilst in MeOH 424.0599 (calculated), 424.0606 (found), [M–Cl]⁺ C₁₉H₂₀N₃O₂¹⁰²Ru.

رے

b a H ₃ C s r c N Ru CH ₃ d f g F	57 Current Data Parameters NAME NAMES NAME REARA135 EXPNO 22 PROCNO 1 F2 - Acquisition Parameters Data_ 2015612 The 2015613 Data_ 2015613 The 2015613 Data_ 2015614 Data_ 2015613 The The Data_ 2015613 The 2015613 Data_ 2015613 Data_ 2015613 Data_ 2015613 Data_ 2015613 Data_ 2015613 Data_ 101 Data_ 128 Data_ 4 SWH 64102.552 Hz AQ 0.2556404 sec RG 2228.8 DW 7.800 usec DE 6.00 usec DE 6.00 usec DI 1.000000 sec DI 1.000000 sec DI 1.000000 sec DI 1.0000200 sec
	SF02 400.1324008 MHz F1 - Acquisition parameters ND0 2 TD 128 SF01 100.6238 MHz FIDRES 204.515701 Hz SW 260.157 nrm
	FnMODE OF F2 - Processing parameters SI 32768 SF 376.4983540 MHz WDW WDW EM SSB 0 LB 2.00 Hz GB 0 GB 0 C 1.00
	F1 - Processing parameters SI 1024 MC2 OF SF 100.6127690 MHz WDW OSINE SSB 5 LB 0.00 Hz GB 0

-85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 ppm

b aH ₃ C c N i R e f g CF ₃	CI CI CI					NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS SWH FIDRES AQ RG DW DE TE D1 d11 d12 	RAA55 10 1 20140627 16.39 drx400 5 mm QNP 1H/1 zgfhigqn 32768 CDC13 1.956255 Hz 0.2556404 sec 5160.6 7.800 usec 300.0 K 1.0000000 sec 0.03000000 sec CHANNEL f1 ===== 19F 14.60 usec -3.00 dB
						SF01 CPDPRG2 NUC2 PCPD2 PL2 PL12 SF02 ND0 TD SF01 FIDRES SW FIMODE SI SF WDW SSB LB GB PC SI SF WDW SSB LB GB LB GB SE SSB LB GB	$\begin{array}{c} 376.4701166 \ \text{MHz} \\ \hline \\ 376.4701166 \ \text{MHz} \\ \hline \\ \\ \text{waltzl6} \\ 1H \\ 95.00 \ \text{usec} \\ 0.00 \ \text{dB} \\ 15.47 \ \text{dB} \\ 400.1324008 \ \text{MHz} \\ 2 \\ 128 \\ 100.6238 \ \text{MHz} \\ 204.515701 \ \text{Hz} \\ 260.157 \ \text{ppm} \\ QF \\ 32768 \\ 376.4983540 \ \text{MHz} \\ 0 \\ 2.00 \ \text{Hz} \\ 0 \\ 100 \\ 1024 \\ QF \\ 100.6127690 \ \text{MHz} \\ QSINE \\ 5 \\ 0.00 \ \text{Hz} \\ 0 \\ 0 \\ \end{array}$
-10	-20 -30	-40 -5	.0 – 60	-70 -80	-90 -1	00 –110	-120 mag

CHANNEL £2	$b = \frac{H_{3}C}{H_{3}C}$	 NAME EXPNO PROCNO Date Time INSTRUM PROBHD PULPROG TD SOLVENT NS SWH FIDRES AQ RG DW DE TE D1 d11 d12 	RAAA86 45 45 20150306 4.59 drx400 5 mm QNP 1H/1 2gfhigqn 32768 CDC13 128 64102.563 Hz 1.956255 Hz 0.2556404 sec 3649.1 7.800 usec 6.00 usec 300.0 K 1.0000000 sec 0.03000000 sec 0.03000000 sec = CHANNEL f1 ===== 19F 14.60 usec -3.00 dB 376.4701166 MHz
		CPDPRG2 NUC2 PL2 PL12 SF02 ND0 TD SF01 SF SW FnMODE SI SF WDW SSB LB GB PC SI SF WDW SSB LB GB SB LB GB SB	CHANNEL f2

E C H_3 C H_3 r H_3	 INAL INAL EXPNO 1 PROCNO 1 Date_ 20140724 Time 8.40 INSTRUM drx400 PROBHD 5 mm QNP 1H/1 PULPENG zgfhigqn TD 32768 SOLVENT CDC13 NS 128 DS 4 SWH 64102,563 AQ 0.2556404 RG 3251 DW 7.800 DE 6.00 DE 6.00 DE 6.00 DI 1.0000000 sec d11 0.03000000 sec d12 0.00002000 sec
130 1	Hammed CHANNEL f1 f1 f1 f1 f1 f1 f1 f1 f2 f1 f1 f2 f2 f1 f1 f2 f2 f1 f1 f2 f2 f1 f2 f2 <thf2< th=""> f2 f2</thf2<>
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

1. Y. Boutadla, D. L. Davies, R. C. Jones and K. Singh, *Chem. Eur. J.*, 2011, **17**, 3438-3448.