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1 Diatomics-in-molecules construction of the potential energy sur-

faces of the I2Kr72 cluster

1.1 Covalent states

As explained in the Appendix of the main paper, the valence spin-orbital basis for the I atoms

is set in the coupled representation |JkMk〉 of the total angular momentum J = L+S, where Mk

is the eigenvalue of the component of J along the internuclear axis. Since each 2P atom has six

valence orbitals (J = 1
2 ,

3
2 , with M = −J, ...,J), 36 molecular diabatic states can be constructed,

whose wavefunctions have the asymptotic form

|ψ j〉=
36

∑
k=1

C jk

∣∣∣J(A)k M(A)
k

〉∣∣∣J(B)k M(B)
k

〉
, (S1)

where the superscripts (A) and (B) refer to the two I atoms.

The 36× 36 diabatic potential matrix consists of different contributions accounting for all

atom-atom pairwise interactions,

V = VIAIB +
NKr

∑
i=1

VIAKri +
NKr

∑
i=1

VIBKri +
NKr−1

∑
i=1

NKr

∑
j=i+1

VKriKr j , (S2)

where NKr is the number of Kr atoms included in the model. The I–I interaction matrix VIAIB

is diagonal, in agreement with the observation that the coupling between different electronic

states is primarily induced by the environment.1,2 In our implementation, we used the 36 diag-

onal potential energy curves calculated by Teichteil and Pelissier at the coupled cluster level,3

including relativistic contributions. The potential matrices VKriKr j are multiples of the identity

and the Kr−Kr interactions were modelled using the Buckingham-type function of Ref. 4 .

The couplings between the different diabatic states are induced by the interactions between

the Kr matrix and the two iodine atoms, IA and IB, represented by the matrices VIAKri and VIBKri
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of Eq. (S2). These matrices are first expressed in the
{∣∣∣J(A)k M(A)

k

〉∣∣∣J(B)k M(B)
k

〉}
basis as Kronecker

products and then transformed to the symmetry adapted basis as

VIAKri = C†VIKr(RAi,ΩAi)⊗ I6×6C and VIBKri = C†I6×6⊗VIKr(RBi ,ΩBi)C , (S3)

where I6×6 is the 6× 6 identity matrix and the C matrix contains the coefficients of Eq. (S1),

given explicitly in the Appendix of the main paper (see Table 1). Rαi is the Iα −Kri distance

(α = A,B) and Ωαi is a set of Euler angles which define the relative orientation between two

reference frames: (i) An “interaction” frame (x′y′z′) where the z′ axis is aligned to the direction

of the Iα −Kri bond, and (ii) the body-fixed frame (xyz) anchored to the chromophore, oriented

such that the z axis is aligned to the I–I bond and the x axis lies in the x′′z′′ plane of the space-

fixed frame, defined by the frozen Kr cage. The basis set and the resulting diabatic Hamiltonian

refer to the body-fixed system, whereas the different 6× 6 I–Kr interaction matrices VIKr(R,0)

are conveniently calculated in the x′y′z′ frames of the respective atom pairs, where they take

the standard form5,6 given in Table S1. The transformations to the common xyz system are

performed using Wigner rotation matrices,

VIKr(R,Ω) =
[
D

1
2 (Ω)⊕D

3
2 (Ω)

]†
VIKr(R,0)

[
D

1
2 (Ω)⊕D

3
2 (Ω)

]
. (S4)

The distance-dependent potentials VΣ and VΠ, which define the matrix VIKr(R,0) have been

modelled using Morse-Morse-switching function-van der Waals potentials derived from zero

electron kinetic energy (ZEKE) spectroscopic measurements.7

Table S1 The 6×6 I–Kr interaction matrix VIKr(R,0) in the interaction frame, where |J,M〉 basis refer to
the I–Kr connecting axis [see Eq. (S4)]

|J,M〉
∣∣1

2 ,±
1
2

〉 ∣∣3
2 ,±

3
2

〉 ∣∣3
2 ,±

1
2

〉∣∣1
2 ,±

1
2

〉
δMM′ (VΣ +2VΠ)/3 0 ±δMM′

√
2(VΠ−VΣ)/3∣∣3

2 ,±
3
2

〉
0 δMM′VΠ 0∣∣3

2 ,±
1
2

〉
±δMM′

√
2(VΠ−VΣ)/3 0 δMM′ (2VΣ +VΠ)/3

1.2 Ion pair manifold

As explained in the Appendix of the main paper, the diabatic states of the ion pair manifold are

represented by structures in which the Kr atoms are in their ground state, the I− anion has an

S closed shell and the I+ cation has a 3P structure, associated to nine |JkMk〉 terms (Jk = 0,1,2).

Accounting for both I−I+ and I+I− configurations yields a total of 18 diabatic states of the form

|ψ j〉=
9

∑
k=1

C jk

∣∣∣J(A)k M(A)
k

〉∣∣∣S(B)〉+ 18

∑
k=10

C jk

∣∣∣S(A)〉∣∣∣J(B)k M(B)
k

〉
. (S5)

Similarly to the covalent manifold, the coefficients C jk form a 18× 18 matrix and are defined

in order to obtain electronic states belonging to one of the irreps of the D2h point group. The

explicit form of the states of Eq. (S5) is given in Ref. 8. The 18 ion pair levels are energetically

separated into two tiers, and only transitions to the lowest tier are considered in this work. The
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relevant states, associated with ten 3P2 structures, are reported in Table 2 of the Appendix of the

main paper, and their irrep is indicated.

The diabatic 18× 18 ion pair potential matrix is a sum of different atom-atom interaction

terms,

W = WIAIB +
NKr

∑
i=1

WIAKri +
NKr

∑
i=1

WIBKri +
NKr−1

∑
i=1

NKr

∑
j=i+1

WKriKr j +Wpol . (S6)

Similarly to the covalent manifold, WIAIB is the diagonal matrix which contains ion-pair potential

energy curves derived from detailed analysis of the emission spectra9 and modelled using the

Morse potentials of Ref. 8. The matrices WKriKr j are multiple of the identity and defined by the

same Kr–Kr interaction potential used for the covalent manifold.

The Kr environment induces the coupling between different diabatic states. The interac-

tions between the Kr and the iodine atoms IA and IB are described by the matrices WIAKri and

WIBKri , respectively, which are evaluated in the basis
{∣∣∣J(A)k M(A)

k

〉∣∣S(B)〉 ;
∣∣S(A)〉∣∣∣J(B)k M(B)

k

〉}
and

then transformed to the symmetry adapted basis as follows:

WIAKri = C† [WI+Kr(RAi,ΩAi)⊕ I9×9WI−Kr(RAi)]C , (S7a)

WIBKri = C† [I9×9WI−Kr(RBi)⊕WI+Kr(RBi,ΩBi)]C , (S7b)

where WI−Kr(R) is the pair potential between the iodine anion and the krypton anion, for which

the expression derived from the experiments of Ref. 7 is used. The 9× 9 matrix WI+Kr(R,Ω)

describes the interaction between the Kr atoms and the 3P cation I+. Similarly to the case of

the 2P atom discussed in Sect. 1.1, this matrix conveniently set up in the reference frame x′y′z′

where the z′ axis is aligned to the I–Kr direction, and the potential matrix takes the form of Table

S2.10 The transformation to the body-fixed frame is performed using Wigner rotation matrices,

WI+Kr(R,Ω) =
[
D0(Ω)⊕D1(Ω)⊕D2(Ω)

]† WI+Kr(R,0)
[
D0(Ω)⊕D1(Ω)⊕D2(Ω)

]
. (S8)

The I+ · · ·Kr pair potentials WΣ(R) and WΠ(R), defining the matrix WI+Kr(R,0) were not avail-

able experimentally or theoretically. They have been modelled using a Morse-Morse-switching

function-van der Waals potential,7 with the same short range interaction as for the I · · ·Kr pair,

and a potential of the form −α1/2R4−α2/2R6 for the long range, where α1 and α2 are the first

and second polarizability of the Kr atom.7,11

Similarly to the procedure of Ref. 8, the force field of the ion-pair manifold is made polariz-

able with the addition of the diagonal matrix Wpol =WpolI18×18, which includes charge-induced

dipole and induced dipole-induced dipole interactions. The induction energy Wpol is evaluated

in the electrostatic approximation12 as

Wpol =−
NKr

∑
i=1

µµµ
ind
i ·
(

RiA

R3
iA
− RiB

R3
iB

)
−

NKr

∑
i, j=1

µµµ
ind
i Ti jµµµ

ind
j +

NKr

∑
i=1

µµµ ind
i ·µµµ ind

j

2α1
, (S9)
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Table S2 The 9× 9 I–Kr interaction matrix WI+Kr(R,0) in the interaction frame, where |J,M〉 basis refer
to the I+ · · ·Kr connecting axis [see Eq. (S8)]

|J,M〉 |0,0〉 |1,0〉 |1,±1〉 |2,0〉 |2,±1〉 |2,±2〉

|0,0〉 (WΣ +2WΠ)/3 0 0
√

2(WΠ−WΣ)/3 0 0

|1,0〉 0 WΠ 0 0 0 0

|1,±1〉 0 0 δMM′ (WΣ +WΠ)/2 0 ±δMM′ (WΠ−WΣ)/2 0

|2,0〉
√

2(WΠ−WΣ)/3 0 0 (2WΣ +WΠ)/3 0 0

|2,±1〉 0 0 ±δMM′ (WΠ−WΣ)/2 0 (WΣ +WΠ)/2 0

|2,±2〉 0 0 0 0 0 WΠ

where Ti j =∇∇∇i∇∇∇ j (1/Ri j) is the dipole-dipole tensor, and the atomic induced dipoles are obtained

by solving the equations

µµµ
ind
i = α

[
RiA

R3
iA
− RiB

R3
iB
+

NKr

∑
j=1

Ti jµµµ
ind
j

]
. (S10)

The complex 10× 10 diabatic potential matrix for the first tier has the form of Table S3.

Analogously to the covalent case, the diagonal potentials are totally symmetric functions of the

coordinates, and the off-diagonal couplings transform according to the irreps of the D2h group

which result from the direct products Γ(ψ i)×Γ(ψ j).

Table S3 The form of the potential matrix W for the 10 ion-pair state of the first tier, as resulting from
the DIM model applied to the I+I− molecule in a D2h crystal cage. The diagonal potentials are totally
symmetric (Ag) functions of the vibrational coordinates; the irrep of the off-diagonal coupling functions is
indicated by the subscript

|ψ1〉 |ψ2〉 |ψ3〉 |ψ4〉 |ψ5〉 |ψ6〉 |ψ7〉 |ψ8〉 |ψ9〉 |ψ10〉

|ψ1〉 W (1,2)

|ψ2〉 0 W (1,2)

|ψ3〉
√

3WB2g i
√

3WB3g W (3)

|ψ4〉 i
√

3WB3g

√
3WB2g 0 W (4)

|ψ5〉 WB1u iWAu WB3u iWB2u W (5)

|ψ6〉 WAg iWB1g WB2g iWB3g W (4)
B1u

W (6)

|ψ7〉 i
√

3WB2u

√
3WB3u i

√
3

2 WAu W ′′′B1u
−iWB3g −iWB2u W (7)

|ψ8〉
√

3WB3u i
√

3WB2u W ′′B1u
−i
√

3
2 WAu WB2g WB3u 0 W (8)

|ψ9〉 W ′B1u
0

√
3WB3u −i

√
3WB2u WAg WB1u −i

√
3WB3g

√
3WB2g W (9,10)

|ψ10〉 0 W ′B1u
−i
√

3WB2u

√
3WB3u −iWB1g −iWAu

√
3WB2g −i

√
3WB3g 0 W (9,10)

4



2 Selection of the modes included in the quantum dynamical simu-

lation

2.1 Totally symmetric modes

The procedure to identify the relevant totally symmetric modes is essentially identical to the

one used in Ref. 13 to construct a potential energy surface for the isolated B state. In brief,

the geometry of the embedded cluster is optimized for the X state, the mass-weighted Hessian

matrix is calculated and diagonalised to get the squared frequencies ω2
i and the normal modes

q′i, dimensionless normal modes are finally obtained by frequency-weighting, qi = q′i
√

h̄/ωi.

The modes expected to be the most active are identified by calculating classical trajectories

evolving on the four diabatic surfaces of the states from ψ7 to ψ13. For each surface, the initial

positions and momenta are sampled from the Wigner distributions

W0(qi, pi) =
1
π

exp
[
−
(

qi−q(0)i

)2
− p2

i

]
, (S11)

where q(0)i = 0 for i 6= 1; q(0)1 is set to zero for the dynamics on the B state, and in the other

cases it is chosen as the crossing point with the B state curve. The modes are sorted in order of

dynamical relevance by evaluating the time-averaged dimensionless phase space variances

Σi =

(
1
T

∫ T

0

〈
q2

i + p2
i
〉

dt
)
−1 , (S12)

which is large for the modes with the largest displacements from their initial average position.

The quantities Σi obtained in the classical simulations on four diabatic surfaces are shown in

the bar charts of Fig. S1 for i > 1. The non-totally symmetric modes remain nearly undisplaced

during the dynamics. Among the ag modes, the most displaced ones in the dynamics on the B

state are the Kr belt atoms stretching mode q5 and, to a lesser extent, q64, q111 and q115. These

coordinates and, additionally, the modes q62, q164, q201, q210 and q215 are also relevant for the

description of the motion on the predissociative surfaces.

2.2 Non-totally symmetric modes

As shown in Table 1 of the Appendix of the main paper, the six states from ψ7 to ψ13 have

all different symmetries. Therefore, the six diabatic couplings Vα between the B state and the

predissociative states are mediated by modes belonging to six different irreps α (see Table 2 of

the Appendix of the main paper). In the reduced dimensionality model, one effective mode qα

is constructed for each irrep as linear combination of normal modes

qα = Nα ∑
j

q j

(
∂Vα

∂q j

)
q∗

, with Nα =

[
∑

j

(
∂Vα

∂q j

)
q∗

]− 1
2

, (S13)

where the derivatives (∂Vα/∂q j)q∗ are evaluated at the diabatic crossing points between the

potential curves of the states ψ7 and ψn, with the bath modes fixed to zero (i.e. at the X state

minimum).
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Figure S1 (a-d) Time-integrated phase space variances Σi of the normal modes of the I2Kr72 cluster
embedded in the Kr130 cage, obtained from the calculated full-dimensional classical trajectories evolving
on the isolated diabatic surfaced of the states from ψ7 to ψ13. (e) The modes of the I2Kr72 cluster included
in the quantum dynamical simulations.

The irrep of the diabatic coupling functions Vα are such that α = Γ(ψ7)⊗Γ(ψn). The con-

struction of Eq. (S13) has a rigorous foundation,14,15 and it has been shown that even a single

effective mode provides quantitative estimates of diabatic transition rates and probabilities.16–18

Eq. (S13), applied to the six relevant couplings, yields six non-totally symmetric effective

modes which belong to different irreps. Two additional symmetry-breaking modes are con-

structed by applying the same equation to the potentials V (2)
B1u

and VB1g (with the gradients eval-

uated at q1 = 30), which mediate the coupling between the predissociative states and the low

lying bound states, from ψ1 to ψ6. The mode q(2)B1u
is then orthogonalized with respect to q(1)B1u

.

The frequencies associated to the effective modes, evaluated using the formulas of Ref. 14, are

given in Fig. 2 of the main paper.

3 Transition dipole moment functions

The transition dipole moment functions for the B←− X , E ←− B and β ←− A excitations are

adapted from the experimentally derived expressions,19–21 and have the following form:

µBX(q1) =
exp
[
−0.00144(q1−19.7)2

]
q1 +54.1

36.8ea0 , (S14a)

µEB(q1) =
187.031ea0

15012.2+(q1−25.56)2 , (S14b)

µβA(q1) = 0.27116e−0.04948q1 ea0 . (S14c)
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4 Electronic dephasing

The nonadiabatic dynamics starting on the B state give rise to a superposition of high-dimensional

wave packets located on different diabatic surfaces. When an observation is done on the I2 chro-

mophore, the Kr bath is traced out, and the precise phase relation between the wave packet

on the B state and those on the predissociative surfaces tends to disappear. Such electronic

dephasing si typically monitored in time by evaluating the coherences 〈Ψ, t|ψ7〉〈ψ j|Ψ, t〉.
Since the initial wave packet on the B surface is totally symmetric, the wave packets evolving

in the states ψ j have a symmetry Γ7×Γ j 6= Ag, where Γ j is the irrep of the state ψ j. Therefore,

the coherences vanish upon integration of the vibrational coordinates. However, the reason for

the formally vanishing coherence is purely topological, i.e. it is related to the geometric phase

effect, and has nothing to do with the environment-driven decoherence.

In order to obtain an estimate for the electronic dephasing time, due to the interaction with

the bath, the quantities

ς j(q1, t) =
〈
Ψ, t|ψ7〉qΓ〈ψ j|Ψ, t

〉
qbath

(S15)

are evaluated. In Eq. (S15) the integration is performed only over the bath modes, and qΓ is the

symmetry-breaking mode which belongs to the appropriate irrep, Γ(ψ7)×Γ(ψ j), in order that

the integral does not vanish (in principle, any odd function of qΓ could be used).

The quantities ς j are plotted in Fig. S2 for the eight predissociative states, for the dynamics

initiated by impulsive B←− X excitation. The “coherences” between the B state and the crossing

states from ψ8 to ψ13 are visible only in certain time windows, which roughly correspond to the

times at which the internal conversion events of Fig. 3(a) of the main paper take place. The

wave packets formed in different diabatic states dephase so rapidly that the time windows for the

vibronic coherences last for only half-vibrational period (150–200 fs). The coherences between

the B state and the states ψ4 and ψ5 are formed transiently around 900 fs and have a similar

duration.

Similar to the excitonic transport in multichromophoric systems, long-lived coherences are

often associated with parallel wave packet evolution across several coupled electronic states.22,23

That is, rapid population exchange between the electronic states does not preclude concerted

wave packet motion. In the present case, the population dynamics lasts for 1.5 ps, which is

indeed the time scale for which most of the coherences of Fig. S2 are observed. Note however

that the coherences ς12 and ς5 emerge also around 2200 fs, i.e. much after the time needed for

the equilibration of the electronic populations.
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