Supporting Information

The influence of hydrofluoric acid etching process on the

photocatalytic hydrogen evolution reaction using mesoporous silicon

nanoparticles

Sarah A. Martell,^a Ulrike Werner-Zwanziger ^a and Mita Dasog ^{a*}

^aDepartment of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, NS, Canada

*Email: mita.dasog@dal.ca

Figure S1. (A) N_2 adsorption and desorption isotherm and (B) pore size distribution of unetched mp-Si nanoparticles.

Figure S2. ATR spectrum of mp-Si nanoparticles, before and after etching with varying volumes of 48% HF acid.

Figure S3. Absorption (Kubelka-Munk function) spectra of mp-Si nanoparticles after etching with varying volumes of 48% HF acid.

Figure S4. N₂ adsorption and desorption isotherms of HF treated mp-Si nanoparticles.

Figure S5. Pore size distribution in mp-Si nanoparticles treated with HF acid.

Figure S6. ¹H ssNMR spectra of unetched mp-Si nanoparticles and those etched with 1.0 mL, 0.5 mL, 0.2 mL of HF acid. The sharp feature around 5 ppm stems from residual solvent.

Figure S7. ²⁹Si{¹H} CP/MAS spectra of unetched and etched mp-Si nanoparticles.

Figure S8. ²⁹Si{¹H} CP/MAS spectra of unetched and etched mp-Si nanoparticles overlaid on top of each other. The spectra are normalized to the peak at \sim -5 ppm.

