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S1. Reactor design 

 

Figure S1 – a) Schematics of the experimental setup: gas mixing circuit, reactor chamber and 
setup for OES. The optical fiber is pointing perpendicularly to the capillary in the middle of the 
visible discharge to capture a horizontal LOS, b) photograph of the micro-plasma reactor 
operating an 80 W Ar plasma with an ethanol vial is placed directly below the capillary exit to 
obtain directly a colloid. 
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S2. Selected area electron diffraction pattern of crystalline Si quantum dots. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2. Selected area electron diffraction of crystalline Si 
quantum dots. Crystalline planes are indicated in the diffractogram. 



S3. Evaluation of particle size distribution using transmission electron microscopy. 

 

 

 

 

Figure S3. Transmission electron microscopy images (left 
panels) and particle size histogram (right panels) obtained for 

different precursor concentrations in the plasma: a) 50 ppm, b) 
100 ppm, c) 150 ppm and d) 200ppm.  



S4. REELS Spectrum 

 

 

Figure S4a. REELS spectra near the Zero-loss peak (ZLP), showing (especially for 100 ppm 
SiH4) a feature at 1.8 eV which is usually assigned to the presence of hydrogen within the 

sampled volume.  

 

Figure S4b. Wider scan REELS spectra of 50 ppm and 200 ppm samples, showing an 
estimation of the electron energy Bandgap estimated from the drop in electron counts near the 
ZLP. Values compare very well with the optical bandgap obtained from Tauc plots. In both 
spectra the Zero Loss Peak is centred at 1005 eV Kinetic Energy. 

 

  



S5. Calculation of the electron density from Hα emission line broadening 

 

To fully understand the formation process of the Si QDs it is necessary to characterize the 

plasma parameters of the system for the different experimental conditions under study. Due 

to the reduced plasma size and the atmospheric pressure working conditions, it is difficult to 

directly use many traditional low-pressure plasma characterization techniques. However, 

optical emission spectroscopy (OES) remains a viable non-invasive plasma diagnostic 

technique. In order to develop our theoretical analysis (see further below), three important 

parameters have to be considered. These are gas temperature (Tg), electron temperature (Te) 

and electron density (ne), which can be estimated using OES as follows. The gas temperature 

can be determined from the relation of the rotational levels of OH radicals [1]. In our case, 

this temperature is estimated to be approximately constant for all the conditions under 

consideration with a value of 490 K. 

 

The effective electron temperature is calculated using argon emission lines. In particular, 

Boltzmann plots for 4p and 5p levels of argon are used to calculate the excitation temperature 

that, in a second step, is converted to electron temperature through collisional-radiative 

modeling of argon lines [2]. Effective Te decreases from 1.2 eV to 0.9 eV with increasing 

plasma SiH4 concentration from 50 ppm to 150 ppm, figure S5. However, at the highest 

precursor concentration (200 ppm) effective Te increases to 1.2 eV.  

The electron density is determined from the Stark broadening of the Hα (λ0 = 656.28 nm) 

emission line, taking into account other sources of broadening, including instrumental 

broadening (𝛥𝜆௜).  

Figure S5 displays the electron density determined using the detailed procedure for the 

different experimental conditions under consideration. The results show that the electron 

density gradually decreases from 1.8 · 1014 cm-3 to 0.8 · 1014 cm-3 when the SiH4 

concentration is increased from 50 ppm to 200 ppm. 



 

Figure S5. Electron density (left axis) and electron temperature (right axis) calculated for different 

silane precursor concentration introduced in the plasma. 

 

Doppler broadening (𝛥𝜆஽) appears due to the thermal motion of the emitting atoms in the 

plasma and can be estimated as  

𝛥𝜆஽ =  7.162 · 10ି଻𝜆଴ට ೒்

ெ
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with λ0 Hα wavelength in nm, Tg the gas temperature in K and M the atomic mass of 

hydrogen in atomic mass units. 

As the excited atoms interact with neutral ground state atoms of other species, Van der 

Waals broadening (𝛥𝜆ௐ) is an important broadening mechanism in atmospheric-pressure 

plasmas and it can be calculated by  
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where α is the mean atomic polarizability of the neutral perturber and N is the neutral 

ground-state atom density in cm-3. 〈𝑅ଶ〉 is the square difference of the mean coordinate vector 

of the radiating atom for the upper and lower levels. By considering the relationship of N 

with pressure P and temperature Tg, 𝛥𝜆ௐ can be simplified as 𝛥𝜆ௐ(𝑛𝑚) =  3.6 · 𝑃/𝑇௚
଴.଻. 

Stark broadening (𝛥𝜆ௌ) is related to the electron density by the following relationship  
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where ne is the electron density in cm-3. In order to de-convolute the experimental Hα signal 

(𝛥𝜆ா), it is necessary to consider that 𝛥𝜆௜ and 𝛥𝜆஽ present Gaussian profiles and 𝛥𝜆ௐ and 

𝛥𝜆ௌ Lorentz profile. The combination results in a Voigt profile that can be described as: 
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S6. Collision corrected model and heat balance on particle’s surface  

The plasma heating model only considers the effect of argon atoms on the heating of 

particles. The methodology consists of two separate steps. Firstly, the particle potential is 

calculated assuming it is equal to the floating potential when electron and ion fluxes are 

equalized, i.e., Ie = Ii. Secondly, the particle temperature is obtained from the balance of 

energy fluxes to and from the surface of a particle assuming a steady state.  

Low-pressure plasmas are commonly modeled using the orbital motion limited (OML) 

model that provides an adequate evaluation of the electric potential of a particle immersed in 

the plasma. However, the OML model gives acceptable values for the floating potential only 

when the condition 𝑙௜ ≫ 𝜆ௗ ≫ 𝑎 is satisfied, where 𝑙௜ is the ion mean free path, 𝜆ௗ the plasma 

screening length and a is the particle radius. For APPs 𝑙௜ is of the same order of 𝜆ௗ, limiting 

the accuracy of the OML model. Hence, the effect of ion collisions and charge-exchange 

collisions with neutrals plays an important role. The general result is a particle’s size 

dependence of charge accumulated on each single particle’s surface that leads to an increased 

surface temperature in respect to base gas temperature, and the effect is stronger the smaller 

the particles and the bigger the difference between electron temperature and gas temperature. 

The following analytical expression  
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describes a collision-corrected model (CCM) that considers the effect of ion-neutral 

collisions on the ion current. The term 𝐼௜
ௐ஼ in equation (1) corresponds to the weakly 

collisional regime and can be estimated as 
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where 𝑛௜ is the ion density that, due to charge neutrality 𝑛௜ =  𝑛௘, 𝑘௕ is the Boltzmann 

constant, 𝑇௜ is the ion temperature which is assumed to be equal to 𝑇௚, M is the mass of Ar 

ions, 𝑒 is the electron charge and 𝑉௣ is the floating potential. The second term in equation (1) 

describes the contribution of ions in a strongly collisional regime were more than one 

collision is expected, that is 
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The electron flux to the particle surface is  
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where 𝑛௘ is the electron density, 𝑇௘ is the electron temperature and 𝑚௘ is the electron mass. 

Therefore, the floating potential is obtained from matching equations (1) and (4) for the 

different ne ant Te measured in each of the experimental conditions presented in Figure S6.  

 

To evaluate the particle heating mechanisms, the steady-state energy balance on the surface 

of the particle can be written as  

 

𝑞௖௢௡ =  𝑞௞௜௡ +  𝑞௥௘௖      (5) 

 

where 𝑞௞௜௡ and 𝑞௥௘௖ represent the rates of energy transfer via kinetic energy of charged 

species (ions and electrons) and ion-electron recombination on the particle surface, while 

𝑞௖௢௡ is the heat loss rate to the surrounding gas through heat conduction. Equation (5) is valid 

for particles smaller than 100 nm . Expressions defining the different rates are described in 

Table S6. Looking at the expressions at Table S6, it is possible to observe that 𝑞௖௢௡ depends 

on the particle temperature (𝑇௣). Hence, it is possible to derive an analytical expression to 

calculate 𝑇௣ from the definition of 𝑞௖௢௡ and equation (5).  

 

 

 

 

 

 

 

 

 



Definition Equation 
Heat loss rate to the surrounding gas through 
heat conduction 𝑞௖௢௡ =  

8𝜋𝑎ଶKn

2𝑎 + 𝑙𝐺
 (𝑇௣ − 𝑇௚) 

Knudsen number 
Kn =

𝑙

𝑎
 

Mean free path 
𝑙 =  

Kn

𝑝𝑓
 (𝛾 − 1)ඨ

𝜋𝑀𝑇௚

2𝑘௕
 

Geometry dependent heat transfer factor 
𝐺 =  

8𝑓

𝛼(𝛾 + 1)
 

Eucken factor 
𝑓 =  

9𝛾 − 5

4
 

Heat capacity ratio 
𝛾 =  

𝐶௣

𝐶௩
 

Thermal accommodation coefficient 𝛼 = 1 
(full accommodation) 

Kinetic energy transfer of charged species on 
the particle surface 

𝑞௞௜௡ =  𝐼௜(2𝑘௕𝑇௘ − 𝑒𝑉௣) 

Ion-electron recombination on the particle 
surface 

𝑞௥௘௖ =  𝐼௜𝜀௜ 

 

Table S6. Heat transfer rates and subsequent expressions along the surface of the particles 

immersed in the plasma region. 

The particle temperature can be written as 

 

𝑇௣ =  𝑇௚ +  𝛥𝑇௖ (6) 

 

where 𝛥𝑇௖ is the increment of particle temperature due to collisions inside the plasma and 

can be expressed as:  

 

𝛥𝑇௖ =  ቀ
ଶ௔ା௟
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𝛥𝑇௖ is proportional to a geometric factor (first term in the equation), to the ion flux 

impinging the particle surface and to the energy exchange on the particle surface. At this 

point, it is possible to estimate Tp by introducing in equation the values of Vp and Ii obtained 

from equalizing equations (1) and (4). 

 

More details can be found in: 

[4] Askari S, Levchenko I, Ostrikov K, Maguire KP and Mariotti D 2014 Appl. Phys. Lett. 104, 163103. 



S7. Bandgap determination silicon quantum dots. 

In order to evaluate the bandgap of silicon QDs it is necessary first to calculate the absorption 
coefficient that, in a second step, will be introduced in a Tauc plot. The following expression 
allows calculating the absorption coefficient 
 

𝛼 =  −
ln(𝑇)

𝐿
 
1 − (𝑇 + 𝑅)

1 − 𝑇
 

 
where L is the effective thickness of the Si QDs film, T is the transmittance and R accounts 
for specular reflectance and scattering of the sample. T and T+R were obtained using the UV-
vis system described in the experimental section that includes an integrating sphere to 
evaluate the scattering of the materials.  
To find a value for the bandgap the absorption coefficient is introduced in a Tauc plot. In this 
plot (𝛼 · 𝐸)ௗ vs E are ploted, where E is the photon energy and d is a coefficient. Depending 
on the nature of the bandgap d can have different values. In our case, silicon in known to 
have an indirect bandgap which corresponds to d= ½. Projecting the linear part of the Tauc 
plot towards the x-axis provides a value for the bandgap of the material. As an example, 
Figure S7 displays a Tauc plot of Si QDs grown using 50 ppm and 200 ppm of silane during 
the synthesis process.   

Figure S7. Tauc plots with relative best fit lines for the bandgap determination 
of Si QDs samples at 50 and 200 ppm of silane, which resulted respectively in 
all-crystalline 1.8 nm particles and all-amorphous 3.6 nm particles. The table 
indicates the statistical confidence of fits in terms of width of the data range 
chosen for the linear fit, R2 coefficient and errors obtained. 

Sample Fit Data range (meV) R2 Eg (eV) ΔE (eV)

50 ppm 80 0.999 2.5 ± 0.1

200 ppm 70 0.997 2.3 ± 0.1



S8. SPS Spectra for bandgap determination 

Comparison of bandgap measurements 

Sample REELS (figure S4b) Absorption (figure S7) SPS (figure S8) 
50 ppm 2.5 eV 2.5 eV 2.7 eV 
200 ppm 2.4 eV 2.3 eV 2.3 eV 

 

 

  

 

  

 

Figure S8. SPS spectrum of two amorphous particles-containing samples, 
showing a good match between the energy threshold to induce a photovoltage 
and the relative UV-VIS energy gaps obtained with Tauc Plots 



S9. APS spectra and extraction of VBM  

 

 

Figure S9 – Air photoemission spectra can give the values of VBM for a semiconductor [5], 
calculating a best-fit line of the cube root of the photoemission signal and extrapolating the 
intercept with the energy axis. Plots and best-fits for a) 50 ppm , b) 100 ppm and c) 200 ppm of SiH4. 

 

 

[5] Iain D. Baikie et al. / Energy Procedia 60 ( 2014 ) 48 – 56 
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S10. Solar cell design based on SiQDs and CuO QDs 

In a second device architecture we maintained the same structure for the bottom part of the device, i.e. 

the ITO/TiO2/Si QDs structure was unchanged. However, we replaced the Cu2O transport layer with 

an additional layer of surface treated p-type Si nanocrystals before depositing a CuO QDs transport 

layer (figure S10 in supporting information). The p-type Si nanocrystals were obtained by 

electrochemical etching of Si wafers; characterization and synthesis details can be found elsewhere 

[6,7]. The plasma-produced Si QDs film and the layer formed by p-type Si nanocrystals are expected 

to establish a junction, intended to increase the density of generated carriers. CuO QDs were obtained 

by an APP-liquid method, following the protocol previously detailed [8]. A magnetron sputtered Au 

film was deposited through a mask as the top contact. Unfortunately, the expected improvements did 

not materialize (table S10 and figures S10) and this suggests that the use of a single absorber in QDs 

solar cells is a better approach. The values for the shunt and series resistance are the result of the 

interlayer contact, which is not conformal and where a plethora of different trap states for carriers are 

expected to hamper their transport properties 

 

Figure S10. Non-equilibrated band diagram for the PV device based on Si QDs as active layers and 

CuO QDs as electron blocking layer. Inset, diagram of the layer structure of the relative device . 

 

 

 



 

 
Jsc  [µA cm-

2] 
Voc  [mV] FF  [%] η  [% · 10-3] Rseries  [kΩ/cm2] Rshunt  [kΩ/cm2] 

Device I 
(figure 6 

Main paper) 
9.3 ± 1.5 785 ± 10 87 ± 11 6.3 ± 0.3 2.7 ± 0.6 32 ± 1 

Device II 
(figure S10) 

6.4 ± 3.2 779 ± 40 53 ± 6 2.7 ± 1.2 65 ± 5 200 ± 12 
 

Table S10. Relative performance of tested PV cells, the types refer to the diagrams in figure 6 and 

S10. 
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