Supporting Information

Modulating Donor-Acceptor Transition Energies in Phosphorus-Boron co-Doped Silicon Nanocrystals via X- and L-Type Ligands

Gregory F. Pach, Gerard M. Carroll, Hanyu Zhang, Nathan R. Neale* Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States

	Tube Size	30%		100%				Forward
NC size	(ID)	B2H6/H2	PH3	SiH4	Ar	H2	Pressure	Power
2.7 nm	19 mm	1.4 sccm	1.4 sccm	2.5 sccm	48 sccm	168 sccm	1.0 Torr	250 W
3.1 nm	19 mm	1.4 sccm	1.4 sccm	2.5 sccm	48 sccm	168 sccm	1.25 Torr	250 W
3.5 nm	19 mm	1.4 sccm	1.4 sccm	2.5 sccm	48 sccm	168 sccm	1.5 Torr	250 W
3.9 nm	19 mm	1.4 sccm	1.4 sccm	2.5 sccm	48 sccm	168 sccm	2.0 Torr	250 W
4.3 nm	19 mm	1.4 sccm	1.4 sccm	2.5 sccm	48 sccm	168 sccm	2.5 Torr	250 W
4.7 nm	19 mm	1.4 sccm	1.4 sccm	2.5 sccm	48 sccm	168 sccm	2.8 Torr	250 W
4.8 nm	19 mm	1.4 sccm	1.4 sccm	2.5 sccm	48 sccm	168 sccm	3.0 Torr	250 W
5.1 nm	19 mm	1.4 sccm	1.4 sccm	2.5 sccm	48 sccm	168 sccm	3.5 Torr	250 W

Table S1. Growth conditions for all PB:Si NCs in this report

Figure S1. Representative FTIR spectrum of PB:Si-H NCs.

Figure S2. XRD patterns of the (111) crystalline peaks from all PB:Si–H NCs in this study ($D_{NC} = 3.1-5.1 \text{ nm}$). The black dashed line is a Voigt fit. The nanocrystal size is obtained using Scherrer analysis of the broadening of the (111) peak. We use the equation $NC_{diameter} = \frac{k \cdot \lambda}{w \cdot \cos(c)}$ where k is a shaping factor of 1.1, λ is wavelength of the X-rays (1.54 Å), and w and c are the FWHM and center of the (111) peak in radians, respectively.

Figure S3. PL spectra from all PB:Si–X and L \rightarrow PB:Si–X NCs in this study. Peak emission energies are summarized in Figure 1b.

Figure S4. Peak emission energies from PB:Si–H NCs in this study and from our prior report.¹ The dashed grey trace is the power fit we previously developed.

Figure S5. a) Shift in the peak PL energy for alkyl (black markers), alkylthiol + alkylthiolate (green markers), alkylamine + alkylamide (blue markers), and alcohol + alkoxide (red markers) terminations from PB:Si–H NCs of the same diameter. b) Shift in the peak PL energy from PB:Si–CH₂R NCs.

Figure S6. PB:Si–H directly dispersed in a solution of dodecanol and toluene showing the ability of PB:Si–H NCs to spontaneously solubilize under certain conditions. This spontaneous solvation likely results from reaction to form X-type *Si–OR and L-type RHO $\rightarrow *B$ interactions at the surface that result in the colloidal dispersion.

Figure S7. a) PL spectra from 3.5 nm RHO \rightarrow PB:Si–OR NCs functionalized via spontaneous solvation in 1-dodecanol (light red trace) and via the radical-initiated thermal process (dark red trace). b) PL spectra from PB:Si–CH₂R (black trace) and RHO \rightarrow PB:Si–CH₂R (red trace) NCs showing that a ~50 meV blue shift occurs upon subsequent L-type ligand functionalization with surface *B atoms.

Figure S8. Top: FTIR data adapted from our prior report² on B:Si NCs showing the presence of surface oxide characteristic of hydro- and/or silylsilylation across the sulfoxide S=O bond in DMSO to give $(CH_3)_2(O)(Y)S-O-*SiH_x$ (Y = H for hydrosilylation and SiH₃ for silylsilylation). Bottom: Proposed mechanism of spontaneous reaction of DMSO with PB:Si-H NCs to give $(CH_3)_2SO_2 \rightarrow PB:Si-O-S(Y)(CH_3)_2$.

Figure S9. TRPL traces from all $L \rightarrow PB:Si-X$ NCs in this study. Figure 3b provides a summary of all lifetimes.

	t_1 (ms)	A_1	t 2 (ms)	A_2	t 3 (ms)	A ₃
Alcohol + Alkoxide	1.1	0.8	10.0	0.3	110.1	0.5
Alkylamine +	0.9	0.8	9.0	0.3	80	0.4
Alkylamide						
Alkylthiol +	0.6	0.1	6.0	0.3	62	0.2
Alkylthiolate						

Figure S10. Top) TRPL traces from Figure 3 fit with a tri-exponential fit. Bottom) Lifetime and relative amplitudes from fits.

Figure S11. PLQY spectra for alcohol/alkoxide, alkylamine/alkylamide, and alkylthiol/alkylthiolate terminated 3.1 nm L→PB:Si–X NCs. The PLQY is determined by $PLQY = \frac{\# \ of \ emitted \ photons}{\# \ of \ absorbed \ photons}$. The number of absorbed photons is calculated by integrating the excitation laser peak (centered at 500 nm) and subtracting that from the integrated laser peak of a blank sample (cuvette with toluene). The emitted photons are calculated by integrating the emission spectrum (centered around 800 nm). See methods for further details.

Figure S12. Raman spectrum of a blank sapphire substrate.

Figure S13. XRD spectra of as-synthesized PB:Si−H NC compared to RHS→PB:Si−SR functionalized PB:Si NCs.

References:

- 1. R. Limpens, G. F. Pach and N. R. Neale, *Chem. Mater.*, 2019, **31**, 4426-4435.
- 2. R. Limpens, G. F. Pach, D. W. Mulder and N. R. Neale, J. Phys. Chem. C, 2019, **123**, 5782-5789.