Supplementary Information

Electrochemical exfoliation of graphite in H₂SO₄, Li₂SO₄ and NaClO₄ solutions monitored in-situ by Raman microscopy and spectroscopy

Zhenyuan Xia^{1,2*}, Vittorio Bellani³, Jinhua Sun,¹ Vincenzo Palermo^{1,2}

¹Industrial and Materials Science, Chalmers University of Technology, Hörsalsvägen 7A, 41258 Göteborg, Sweden

²Istituto per la Sintesi Organica e la Fotoreattività, CNR, via Gobetti 101, 40129 Bologna, Italy

³Dipartimento di Fisica, Università degli Studi di Pavia and INFN, via Bassi 6, 27100 Pavia, Italy

Figure S1. a-c) Optical images of HOPG surface during electrochemical oxidation in 0.5 M H_2SO_4 electrolyte and d-f) the corresponding I_D/I_G Raman mapping images.

Figure S2. Raman spectra in 2D band region for A1 and A2 area.

Figure S3. Raman spectra in 2D band region for B1 and B2 area.

Figure S4. a-d) Optical images of HOPG surface during electrochemical oxidation in 1 M NaClO₄/ CH_3CN electrolyte.

Figure S5. Raman spectra acquired from HOPG surface during electrochemical oxidation in 1 M $NaCIO_4/CH_3CN$ electrolyte.