ARTICLE

Supported Fe_xNi_y catalysts for the co-activation of CO₂ and small alkanes

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x Shaine Raseale, a Wijnand Marquart, a Kai Jeske, b Gonzalo Prieto, b Michael Claeysa and Nico Fischer*a

Electronic Supplementary Information ESI

Fig. S1: Thermodynamic equilibrium composition of C_2H_6 , C_2H_4 , CO_2 , CO, H_2O , H_2 , CH_4 and C as function of temperature at a feed composition of (**A**) $CO_2/C_2H_6 = 1$ and 1 bar pressure, (**B**) $CO_2/C_2H_6 = 1$ and 5 bar pressure, (**C**) $CO_2/C_2H_6 = 5$ and 1 bar pressure, (**D**) $CO_2/C_2H_6 = 5$ and 5 bar pressure. Thermodynamic properties from Knacke et al.¹

^{a.} Catalysis Institute and c*change (DST-NRF Centre of Excellence in Catalysis), Department of Chemical Engineering, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa. E-mail: nico.fischer@uct.ac.za

^b Max-Plack-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mühlheim an der Ruhr, Germany.

Electronic Supplementary Information (ESI) available. See DOI: 10.1039/x0xx00000x

Journal Name

Fig. S2: Equilibrium conversions of CO₂-ODH, direct dehydrogenation of ethane (DD), dry reforming of ethane (DR), reverse water gas shift (RWGS) and the Boudouard reaction (BR) at stochiometric feed composition as a function of temperature at 1 bar (A) and 5 bar (C). Equilibrium conversions of ethane decomposition (EAD), ethylene decomposition (EED), CO₂ methantion (MCO₂), CO methanation (MCO) and methane decomposition (MD) at stochiometric feed composition as a function of temperature at 1 bar (B) and 5 bar (D). Thermodynamic properties from Knacke et al.¹

2 | Faraday Diss., 2020, 00, 1-3

Fig. S3: Effect of pressure, feed composition and dilution on C_2H_6 equilibrium conversion at 873K in the CO₂-ODH (**A**), direct dehydrogenation (DD) (**B**) and dry reforming of ethane (DR) (**C**). Thermodynamic properties from Knacke et al.¹

Fig. S4: (**A**) XRD patterns of Al_2O_3 , $CrO_x@Al_2O_3$ and $ZrO_x@Al_2O_3$ after synthesis and after reduction and exposure to ODH conditions for 24 hours (spent samples indicated by suffix S). (**B**) Raman spectra of $CrO_x@Al_2O_3$ and $ZrO_x@Al_2O_3$ as well as bulk Cr_2O_3 and ZrO_2 . Spectra are stacked for clarity.

Please do not adjust margins

Fig. S5: TEM derived nanoparticle size distributions of freshly prepared bimetallic oxide materials Fe1Ni1 (A), Fe3Ni1 (B) and Fe5Ni1 (C) as well as number averaged (d_{num}) and volume averaged (d_{vol}) nanoparticle size.

Fig. S6: Top view of in situ XRD patterns and evolution of Fe and Ni phases during the reduction of Fe1Ni1 (A) Fe3Ni1 (B) and Fe5Ni1 (C) supported on $ZrO_x@Al_2O_3$ as function of temperature in a 5 vol. % H₂ in N₂ gas stream.

4 | Faraday Diss., 2020, 00, 1-3

This journal is © The Royal Society of Chemistry 20xx

Please do not adjust margins

Fig. S7: Fe-Ni phase diagram as function of temperature and Fe:Ni ratio as reported by Predel.²

Fig. S8: (**A**) Top view of situ XRD study of CO₂ activation of KIT-6 supported Fe1N1. Reduction at 873 K for 5 h and 1 K/min in 5 vol.-% H_2/N_2 (left of the black divider line). The sample is subsequently cooled to 323 K in inert and heated at 1 K/min in 1 vol% CO₂/N₂ to 973 K. For clarity only the data above 498 K is shown (right of black divider line). (**B**) Selected diffraction patterns (from bottom to top: freshly reduced, at 723 and 973 K under a flow of 1 vol.-% CO_2/N_2) and calculated diffraction patterns for bcc NiFe (blue), fcc NiFe (red) and Fe₂Ni₁O₄ (magenta). Experimental and modelled patterns are stacked for clarity. For quantitative analysis see table 3. (**C**) CO evolution as function of temperature in the CO₂ activation step measured in a parallel experiment in a fixed bed reactor.

Fig. S9: Selectivity of bimetallic catalysts supported on $ZrO_x@Al_2O_3$. (A) C_2H_4 selectivity of bimetallic catalysts supported on $ZrO_x@Al_2O_3$ and of blank support; (B) CO selectivity of bimetallic catalysts supported on $ZrO_x@Al_2O_3$ and of blank support calculated excluding ODH CO formation pathway. In both cases supported Fe1Ni1 – blue diamonds; supported Fe3Ni1 – grey triangles; - supported Fe5Ni1 – dark blue squares.

J. Name., 2013, 00, 1-3 | 5

ARTICLE

Fig. S10: CO_2 conversion as function of C_2H_6 conversion for FexNiy/CrO_x@Al₂O₃. Ratios of 1 and 2 displayed for clarity. Blank support – red circles; supported Fe1Ni1 – blue diamonds; supported Fe3Ni1 – grey triangles; - supported Fe5Ni1 – dark blue squares.

References

- 1. O. Knacke, O. Kubaschewski and K. Hesselmann, *Thermochemical properties of inorganic substances*, Springer-Verlag, Berlin, 2nd ed edn., 1991.
- 2. B. Predel, in *Dy-Er Fr-Mo*, ed. O. Madelung, Springer Berlin Heidelberg, Berlin, Heidelberg, 1995, DOI: 10.1007/10474837_1321, pp. 1-12.