Electronic Supplementary Material (ESI) for Faraday Discussions. This journal is © The Royal Society of Chemistry 2019

Faraday Discussion 2020 1

Elucidating the role of H2O in promoting the formation of methacrylic acid during the oxidation of methacrolein over heteropolyacid compounds

Supplementary Figures

Elucidating the role of H₂O in promoting the formation of methacrylic acid during the oxidation of methacrolein over heteropolyacid compounds

Sarayute Chansai¹, Yuki Kato², Wataru Ninomiya², and Christopher Hardacre^{1,*}

¹Department of Chemical Engineering and Analytical Science, The Mill, Sackville Street, The University Manchester, Manchester M13 9PL, U.K. ²Mitsubishi Chemical Corporation, Hiroshima R&D Centre, 20-1 Miyuki-cho, Otake-shi, Hiroshima 739-0693, Japan

*Corresponding author: <u>c.hardacre@manchester.ac.uk</u>

Elucidating the role of H2O in promoting the formation of methacrylic acid during the oxidation of methacrolein over heteropolyacid compounds

Pre-treatment	Switching Experiment					
Ar	MAL+O ₂ Feed					
320 °C						
		D ₂ O		D ₂ O		D ₂ O
	10	10				
 30 °C	min	min				
Time						

Figure S1 Switching experimental profile with switches of D₂O in and out of MAL+O₂.

Time

Figure S2 Transient experimental profile and the effect of D₂O pre-adsorption.

Figure S3 Experimental profile with isotopic switches between D_2O and H_2O .

Figure S4 *In-situ* DRIFTS spectra recorded as a function of time on stream under MAL+O₂+H₂O gas feed at 320° C after 0.5 min (a), 1 min (b), 2 min (c), and 3 min (d). Feed conditions is composed of 2% MAL, 4% O₂, 4% D₂O, and Ar balance and the total flow rate is 50 cm³ min⁻¹. IR background was taken over H₃PMo₁₂O₄₀ catalyst at 320 °C after 60 min Ar pre-treatment at 320 °C.

Figure S5 Typical structure of Keggin-type heteropolyacid catalyst.

Figure S6 Comparison of *in-situ* DRIFT spectra (1400 – 700 cm⁻¹) of Keggin-type $H_3PMo_{12}O_{40}$, recorded at 320 °C after 60 min under Ar pre-treatment (a), after 60 min under D_2O pre-adsorption (b), and after 30 min under MAL+O₂ feed (c). Feed conditions is composed of 2% MAL, 4% O₂, 4% D₂O (when added) and Ar balance and the total flow rate is 50 cm³ min⁻¹.

Figure S7 A comparison of *in situ* DRIFTS spectra (1400 – 700 cm⁻¹) of Keggin-type $H_3PMo_{12}O_{40}$, recorded at 320 °C at steady state conditions under MAL+O₂+**H₂O** (a) and MAL+O₂+**D₂O** (b). Feed conditions is composed of 2% MAL, 4% O₂, 4% D₂O and H₂O (when added), and Ar balance and the total flow rate is 50 cm³ min⁻¹.

Figure S8 Evolution with time of changes of the relative intensities of the DRIFT spectra of MoO_tH (\blacksquare , 1031 cm⁻¹), $Mo=O_t$ (\bullet , 1017 cm⁻¹), and MoO_tH (\blacklozenge , 998 cm⁻¹), and the corresponding mass spectrometry signal of gas phase MAA-OD and MAA-OH observed during the isotopic cycling switches over H₃PMoO₁₂O₄₀ at 320 °C under D₂O+MAL+O₂ feed. Feed conditions is composed of 2% MAL, 4% O₂, 4% D₂O and H₂O (when added), and Ar balance and the total flow rate is 50 cm³ min⁻¹.