SUPPORTING INFORMATION

Effect of thermal treatment on the stability of Na-Mn-W/SiO₂ Catalyst for the Oxidative Coupling of Methane

Dorota Matras^{1,2*}, Antonios Vamvakeros^{3,4}, Simon D.M. Jacques^{3*}, Nicolas Grosjean⁵, Benjamin Rollins⁵, Stephen Poulston⁵, Gavin B. G. Stenning⁶, Hamid R. Godini^{7,8}, Jakub Drnec⁹, Robert J. Cernik¹ and Andrew M. Beale ^{2,3,4*}

¹ School of Materials, University of Manchester, Manchester, Lancashire M13 9PL, UK.

²Research Complex at Harwell, Harwell Science and Innovation Campus, Rutherford Appleton Laboratory, Didcot, Oxon, OX11 0FA, UK.

³ Finden Ltd, Merchant House, 5 East St Helen Street, Abingdon, OX14 5EG, UK.

⁴ Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.

⁵ Johnson Matthey Technology Centre, Blount's Court Road, Sonning Common, RG4 9NH, UK.

⁶ ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK.

⁷ Technische Universität Berlin, Straße des 17 Juni 135, Sekr. KWT-9, D-10623 Berlin, Germany.

⁸ Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, The Netherlands.

⁹ESRF- The European Synchrotron, Grenoble, 38000 France.

Correspondance email: matras.dorota@gmail.com, simon@finden.co.uk, andrew.beale@ucl.ac.uk

1. Experimental details

Figure S1. Schematic representation of the experimental protocol used for the operando XRD-CT measurements with Na-Mn-W/SiO₂ catalyst. Numbers correspond to the order of the XRD-CT measurements.

2. Operando XRD-CT measurements with Na-Mn-W/SiO₂ catalyst

Figure S2. Results of the Rietveld refinement analysis of diffraction pattern collected at room temperature (an average diffraction pattern for XRD-CT dataset).

Figure S3. Panel A: Total weight percentage composition of two cristobalite polymorphs (low and high symmetry) in Na-Mn-W/SiO₂ catalyst as a function of temperature during the temperature ramp under He. Panel B: Line scans collected during the temperature ramp under He, showing the changes in diffraction pattern related to cristobalite phase transition from lower to higher symmetry.

Figure S4. Panel A: Total weight percentage composition of two Na_2WO_4 polymorphs (low and high temperature) in Na-Mn-W/SiO₂ catalyst as a function of temperature during the temperature ramp under He. Panel B: Line scans collected during the temperature ramp under He, showing the changes in diffraction pattern related to Na_2WO_4 phase transition from cubic to orthorhombic crystal structure.

Figure S5. Results of the Rietveld refinement analysis of diffraction pattern collected at 780 °C under He (an average diffraction pattern for XRD-CT dataset).

Figure S6. Results of the Rietveld refinement analysis of diffraction pattern collected at 780 °C under He after the prolonged calcination for 27 h (an average diffraction pattern for XRD-CT dataset).

Figure S7. Results of the Rietveld refinement analysis of diffraction pattern collected at room temperature after the OCM reaction (an average diffraction pattern for XRD-CT dataset).

Figure S8. Spatial distribution of high symmetry cristobalite, collected at 780 °C under He after the prolonged calcination for 27 h. Significant interaction between Na⁺ species and reactor vessel, leading to crystallisation of amorphous silica can be observed in the XRD-CT image.

Figure S9. Photograph of reactor tubes after the laboratory catalyst performance testing with $Na-Mn-W/SiO_2$ catalysts prepared with incipient wetness impregnation and calcined for 2 h and 8 h.

Note: copies of the raw data presented in this manuscript are available on request by contacting one of the corresponding authors.