Electronic Supplementary Material (ESI) for Food & Function. This journal is © The Royal Society of Chemistry 2019

Supporting information

Mangiferin improves hepatic damage-associated molecular patterns, lipid metabolic disorder and Mitochondrial Function in the alcohol hepatitis rats

Mengran Li¹, Chunxiao Wu¹, Hongbin Guo, Ce Chu, Mingye Hu, Chengyan Zhou*

College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, 180 WuSi Road, Lianchi District, Baoding 071002, China

Correspondence:

Chengyan Zhou, phd, College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, 180 WuSi Road, Lianchi District, Baoding 071002, China.

Tel/Fax: +86 312 5971107; E-mail address: xuefanone@163.com (C.Y. Zhou).

Table S1. Real-time quantitative PCR primer sequences.

Gene name	Sequence (5'-3')	Fragment size
Cas-1	For: CTGGAGCTTCAGTCAGGTCC Rev: CTTGAGGGAACCACTCGGTC	141bp
Cav-1	For: AACAGGGCAACATCTACAA Rev: TCCGCAATCACATCTTCA	163bp
EB1	For: TCACCTGTCCTCCTAACC Rev: GGCAGCGTCATAATCGT	83bp
IL-1β	For: TTGACTTGGGCTGTCCAGATGAGAG Rev: ATGAAGGAAAAGAAGGTGCT	175bp
NF-κB p65	For: ATGGACGATCTGTTTCCC Rev: GTCTTAGTGGTATCTGTGCT	136bp
NLRP3	For: GACCAGGTTCAGTGTTTT Rev: GGTTGGTGCTTAGACTTGAG	212bp
OPA-1	For: CTGCTGTTGGAGGTGGC Rev: CCAGGTCAGGAGCGAAA	189bp
PPAR-γ	For: TACCACGGTTGATTTCTC Rev: TCTACTTTGATCGCACTTT	132bp
β-actin	For: CTTGCATCCCTCAGCACCTT Rev: TCCTGTGGACAATGGATGGA	140bp

Table S2. The equation and the correlation coefficient of FFAs.

FFAs	Calibration equation	Regression coefficient
C16:1	Y=0.1948X+0.2052	0.9993
C16:0	Y=0.1545X+1.1075	1.0000
C17:3	Y=0.0214X+0.0348	0.9996
C18:2	Y=0.1651X+0.2302	1.0000
Trans C18:1	Y=0.0546X+0.0521	0.9994
C18:1	Y=0.0977X+0.0592	0.9998
C18:0	Y=0.0858X+0.3989	1.0000
C20:4	Y=0.0279X-0.0314	0.9997
C22:6	Y=0.0855X+0.0565	0.9994
C22:4	Y=0.01651X+ 0.0349	0.9991

^{*}X: the quality of fatty acids; Y: relative peak area = peak area of fatty acid/peak area of internal standard.

Table S3. The equation and the correlation coefficient of alcohol.

Calibration equation	Regression coefficient
Y=1.4636X+0.0345	0.9996

^{*}X: the quality of alcohol; Y: relative peak area = peak area of alcohol/peak area of internal standard.

Table S4. The equation and the correlation coefficient of metallic elements.

Metallic element	Calibration equation	Regression coefficient	Limit of detection
Na	Y=0.6896X+0.0256	0.9998	6.36
Mg	Y=0.3489X+0.0012	0.9998	1.94
K	Y=0.4106X+0.0185	0.9998	4.50
Ca	Y=0.006X+2.3516	0.9997	6.61
Fe	Y=0.00446X+0.003638	1.0000	0.82
Be	Y=0.001063X+0.000005	0.9999	0.04
В	Y=0.0005665X+0.001112	1.0000	1.25
Ti	Y=0.004803X+0.0001774	1.0000	0.46
V	Y=0.1471X+0.0008505	0.9999	0.08
Mn	Y=0.1295X+0.009352	1.0000	0.12
Co	Y=0.3130X+0.003812	1.0000	0.03
Ni	Y=0.08126X+0.1035	1.0000	0.06
Cu	Y=0.2311X+0.02113	1.0000	0.08
Zn	Y=0.04645X+0.03175	1.0000	0.67
Mo	Y=0.0026X+0.0000773	1.0000	0.06
Cd	Y=0.005893X+0.0000127	1.0000	0.05
Sb	Y=0.02207X+0.0002817	1.0000	0.15
Ва	Y=0.007617X+0.0005792	1.0000	0.20
T1	Y=0.06783X+0.002180	0.9999	0.02
Pb	Y=0.048X+0.001218	1.0000	0.09

^{*}X: the quality of metallic element; Y: relative peak area = peak area of metallic element /peak area of internal standard.

Table S5. Effects of MF on body weights in AH rats.

	NC	AL	SN	MFH	MFL
Initial body weight	251.18±18.02a	245.57±10.09a	242.39±14.58a	251.85±8.58a	251.99±10.79a
Final body weight (g)	509.24±33.02a	407.07±17.04c	459.63±24.89b	451.38±12.05b	440.40±34.46 ^b
Body weight gain (g)	258.46±7.35a	161.50±23.14d	217.24±27.69b	199.53±14.65bc	188.41±20.49°

NC, normal group (0.9% normal saline 10 mL/kg/day); AL, alcohol group (40% alcohol 10 mL/kg/day); SN, silybin group (40% alcohol 10 mL/kg/day + SN 18.9 mg/kg/day); MFH, high-dose mangiferin group (40% alcohol 10 mL/kg/day + MF 100 mg/kg/day); MFL, low-dose mangiferin group (40% alcohol 10 mL/kg/day + MF 50 mg/kg/day). Values are presented as means \pm SD for all groups (n = 10). a-d Means in the same column followed by different letters are significantly different (p < 0.05) according to Tukey's multiple comparisons test.

Table S6. The content of biochemical markers in the serum in the 6-week.

Table 50. The content of blochemical markers in the serum in the o-week.					
	NC	AL			
ALT (U/L)	28.94±0.92b	46.78±1.88 ^a			
AST (U/L)	30.54±1.45 ^b	94.14±4.50 ^a			
AST/ALT	1.06 ± 0.080^{b}	2.02 ± 0.16^{a}			
GGT (U/L)	1.25±0.10 ^b	1.75±0.060a			
DBIL (μmol/L)	1.24±0.080 ^b	2.01±0.090a			
IBIL (μmol/L)	0.22±0.05b	1.54±0.10a			
TBIL (μmol/L)	1.44±0.080 ^b	3.54±0.19a			
ALP (U/L)	86.90±8.04b	124.40±8.13a			
CHE (KU/L)	0.10±0.020b	0.23 ± 0.020^{a}			
TP (g/L)	50.18±1.34a	50.98±2.90 ^a			
ALB (g/L)	26.23 ± 1.05^a	26.90 ± 0.55^{a}			
GLO (g/L)	23.94±4.72°	24.08±2.85a			
ALB/GLO	1.10±0.050a	1.13±0.15 ^a			
TBA (μmol/L)	2.30±0.18b	4.11±0.17 ^a			

NC, normal group (0.9% normal saline 10 mL/kg/day); AL, alcohol group (40% alcohol 10 mL/kg/day). Values are presented as means \pm SD for all groups (n = 10). a-b Means in the same column followed by different letters are significantly different (p < 0.05) according to Tukey's multiple comparisons test.

Table S7. Effects of MF on serum biochemical markers in AH rats.

	NC	AL	SN	MFH	MFL
ALT (U/L)	32.48±2.79°	54.44±8.28 ^a	40.09±3.97 ^b	39.90±5.58 ^b	43.40±7.17 ^b
AST (U/L)	30.32±1.97 ^d	115.64±6.39a	63.47±8.99°	60.43±3.52°	83.02±6.79b
AST/ALT	0.94±0.11°	2.16±0.28a	1.59±0.21 ^b	1.54±0.25b	1.95±0.34a
ALP (U/L)	103.35±5.27 ^b	140.06±9.19a	110.40±12.28b	112.72±15.62 ^b	132.98±11.19 ^a
CHE (KU/L)	0.16 ± 0.028^d	0.35±0.048a	0.21±0.021°	0.22±0.036°	0.30 ± 0.027^{b}
TP (g/L)	52.93±3.49a	51.81±4.81 ^a	51.67±2.72a	51.67±3.79a	50.75±1.13 ^a
ALB (g/L)	25.17±2.22a	26.62±2.45a	26.47±1.48 ^a	26.08±3.01a	26.23±1.30a
GLO (g/L)	27.77±3.42a	23.65±1.40°	25.20±1.73 ^b	25.58±1.42 ^b	25.07±1.14 ^b
ALB/GLO	0.92±0.17a	1.10±0.070a	1.06±0.073a	1.02±0.12a	1.05±0.070a
TBA (μmol/L)	3.45±0.20e	8.10±0.18 ^a	4.62±0.90d	4.98±0.13°	5.75±1.55 ^b

NC, normal group (0.9% normal saline 10 mL/kg/day); AL, alcohol group (40% alcohol 10 mL/kg/day); SN, silybin group (40% alcohol 10 mL/kg/day + SN 18.9 mg/kg/day); MFH, high-dose mangiferin group (40% alcohol 10 mL/kg/day + MF 100 mg/kg/day); MFL, low-dose mangiferin group (40% alcohol 10 mL/kg/day + MF 50 mg/kg/day). Values are presented as means \pm SD for all groups (n = 10). a-e Means in the same column followed by different letters are significantly different (p < 0.05) according to Tukey's multiple comparisons test.

Table S8. Effects of MF on serum SOD, GSH-PX, MDA, CAT and NO in AH rats.

	NC	AL	SN	MFH	MFL
SOD (U/mL)	245.11±9.61 ^a	189.54±16.22°	210.52±9.82b	207.45±10.48b	203.39±4.40 ^b
GSH-PX	36.00±1.94a	19.55±1.61d	31.37±2.59b	29.44±2.49b	22.68±3.25°
MDA (nmol/mL)	5.23 ± 0.75^{d}	8.38 ± 0.72^{a}	6.80 ± 0.62^{c}	6.99 ± 0.21^{bc}	7.57±0.40 ^b
CAT (U/mL)	12.93 ± 1.57^{a}	$6.16 \pm 0.55^{\circ}$	9.35 ± 1.30^{b}	11.55 ± 0.96^a	9.12±1.36 ^b
NO (μmol/L)	40.90 ± 5.67^{c}	96.32 ± 14.61^{a}	60.28 ± 6.09^{b}	58.75±7.38 ^{bc}	68.45±2.91 ^b

NC, normal group (0.9% normal saline 10 mL/kg/day); AL, alcohol group (40% alcohol 10 mL/kg/day); SN, silybin group (40% alcohol 10 mL/kg/day + SN 18.9 mg/kg/day); MFH, high-dose mangiferin group (40% alcohol 10 mL/kg/day + MF 100 mg/kg/day); MFL, low-dose mangiferin group (40% alcohol 10 mL/kg/day + MF 50 mg/kg/day). Values are presented as means \pm SD for all groups (n = 10). a-d Means in the same column followed by different letters are significantly different (p < 0.05) according to Tukey's multiple comparisons test.

Table S9. Effects of MF on liver SOD, GSH-PX, MDA and ROS in AH rats.

	NC	AL	SN	MFH	MFL
SOD (U/mgprot)	384.03±55.88a	193.93±29.57°	254.92±20.60b	250.53±24.75 ^b	231.88±38.25bc
GSH-PX (µmol/gprot)	59.87±4.74 ^a	17.06±3.12°	27.34±7.90 ^b	26.82±5.39b	24.07±5.49bc
MDA (nmol/mgprot)	8.36 ± 0.15^{d}	16.41±0.21a	10.52±0.13°	12.42±0.20 ^b	10.45±0.22°
ROS (IU/mL)	631.43±29.83°	918.53±108.38a	661.07±37.17°	684.07±41.02°	803.54±61.75 ^b

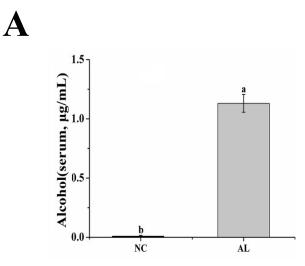
NC, normal group (0.9% normal saline 10 mL/kg/day); AL, alcohol group (40% alcohol 10 mL/kg/day); SN, silybin group (40% alcohol 10 mL/kg/day + SN 18.9 mg/kg/day); MFH, high-dose mangiferin group (40% alcohol 10 mL/kg/day + MF 100 mg/kg/day); MFL, low-dose mangiferin group (40% alcohol 10 mL/kg/day + MF 50 mg/kg/day). Values are presented as means \pm SD for all groups (n = 10). a-d Means in the same column followed by different letters are significantly different (p < 0.05) according to Tukey's multiple comparisons test.

Table S10. Effects of MF on brain SOD, MDA and GSH-PX in AH rats.

	NC	AL	SN	MFH	MFL
SOD (U/mgprot)	4.43±0.41a	2.54±0.19°	4.18±0.25a	4.01±0.76a	3.46±0.16 ^b
GSH-PX (μmol/gprot)	28.13 ± 1.42^{a}	17.01±0.91 ^d	24.93±1.18b	24.43 ± 1.31^{b}	20.23±4.56°
MDA (nmol/mgprot)	0.069±0.017°	0.17±0.0086a	0.081±0.019°	0.089±0.015°	0.13±0.0048b

NC, normal group (0.9% normal saline 10 mL/kg/day); AL, alcohol group (40% alcohol 10 mL/kg/day); SN, silybin group (40% alcohol 10 mL/kg/day + SN 18.9 mg/kg/day); MFH, high-dose mangiferin group (40% alcohol 10 mL/kg/day + MF 100 mg/kg/day); MFL, low-dose mangiferin group (40% alcohol 10 mL/kg/day + MF 50 mg/kg/day). Values are presented as means \pm SD for all groups (n = 10). a-d Means in the same column followed by different letters are significantly different (p < 0.05) according to Tukey's multiple comparisons test.

Table S11. Effects of MF on hepatic lipid measurements in AH rats.


	NC	AL	SN	MFH	MFL
TG (mmol/g)	3.71±0.92°	5.95±0.95a	4.01 ± 0.86^{bc}	4.08 ± 0.86^{bc}	4.93±0.21b
TC (mmol/g)	1.57±0.29°	2.70±0.43a	2.09±0.20b	2.11 ± 0.28^{b}	2.31±0.31b
HDL-C (mmol/g)	3.56±0.23a	2.66 ± 0.17^{d}	3.33 ± 0.43^{b}	3.24±0.14°	3.03 ± 0.26^{d}
LDL-C (mmol/g)	0.18±0.018 ^a	0.32±0.029b	0.20±0.038°	0.21±0.013°	0.28±0.010 ^c

NC, normal group (0.9% normal saline 10 mL/kg/day); AL, alcohol group (40% alcohol 10 mL/kg/day); SN, silybin group (40% alcohol 10 mL/kg/day + SN 18.9 mg/kg/day); MFH, high-dose mangiferin group (40% alcohol 10 mL/kg/day + MF 100 mg/kg/day); MFL, low-dose mangiferin group (40% alcohol 10 mL/kg/day + MF 50 mg/kg/day). Values are presented as means \pm SD for all groups (n = 10). a-d Means in the same column followed by different letters are significantly different (p < 0.05) according to Tukey's multiple comparisons test.

Table S12. Effects of MF on fecal lipid measurements in AH rats.

	NC	AL	SN	MFH	MFL
TG (mmol/g)	0.0048±0.00088 ^c	0.0084±0.00059a	0.0054±0.0012 ^c	0.0054±0.0012°	0.0067±0.00086 ^b
TC (mmol/g)	0.0053±0.0011 ^c	0.0083±0.0011 ^a	0.0060±0.0013 ^{bc}	0.0062±0.00092 ^{bc}	0.0069±0.0010 ^b

NC, normal group (0.9% normal saline 10 mL/kg/day); AL, alcohol group (40% alcohol 10 mL/kg/day); SN, silybin group (40% alcohol 10 mL/kg/day + SN 18.9 mg/kg/day); MFH, high-dose mangiferin group (40% alcohol 10 mL/kg/day + MF 100 mg/kg/day); MFL, low-dose mangiferin group (40% alcohol 10 mL/kg/day + MF 50 mg/kg/day). Values are presented as means \pm SD for all groups (n = 10). a-c Means in the same column followed by different letters are significantly different (p < 0.05) according to Tukey's multiple comparisons test.

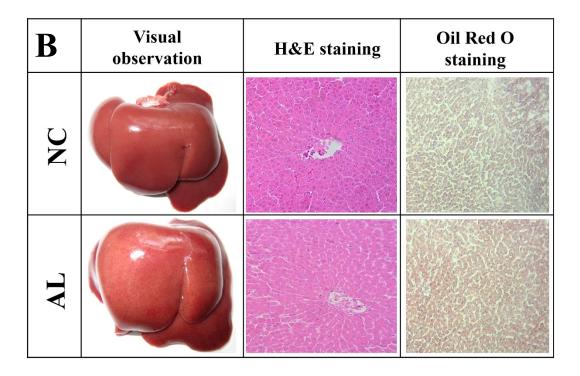


Fig.S1. (A) The content of alcohol in the serum in the 6-week; (B) The liver visual observation, liver sections were stained with haematoxylin and eosin (H&E) and oil red O to demonstrate the histopathological morphology (200 \times) in the middle of the experiment. NC, normal group (0.9% normal saline 10 mL/kg/day); AL, alcohol group (40% alcohol 10 mL/kg/day). Values are presented as means \pm SD for all groups (n = 10). ^{a-b} Means in the same column followed by different letters are significantly different (p < 0.05) according to Tukey's multiple comparisons test.

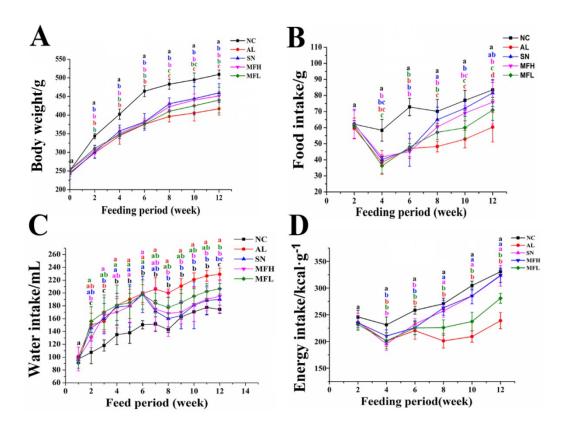


Fig.S2. Effects of MF on body mass, food intake, water and energy intake in AH rats. (A) Body weight; (B) Food intake; (C) Water intake; (D) Energy intake. NC, normal group (0.9% normal saline 10 mL/kg/day); AL, alcohol group (40% alcohol 10 mL/kg/day); SN, silybin group (40% alcohol 10 mL/kg/day + SN 18.9 mg/kg/day); MFH, high-dose mangiferin group (40% alcohol 10 mL/kg/day + MF 100 mg/kg/day); MFL, low-dose mangiferin group (40% alcohol 10 mL/kg/day + MF 50 mg/kg/day). Values are presented as means \pm SD for all groups (n = 10). a-d Means in the same column followed by different letters are significantly different (p < 0.05) according to Tukey's multiple comparisons test.



Fig.S3. The kidney and spleen sections were stained with haematoxylin and eosin (H&E) to demonstrate the histopathological morphology ($200\times$) in the end of the experiment. NC, normal group (0.9% normal saline 10 mL/kg/day); AL, alcohol group (40% alcohol 10 mL/kg/day); SN, silybin group (40% alcohol 10 mL/kg/day + SN 18.9 mg/kg/day); MFH, high-dose mangiferin group (40% alcohol 10 mL/kg/day + MF 100 mg/kg/day); MFL, low-dose mangiferin group (40% alcohol 10 mL/kg/day + MF 50 mg/kg/day).

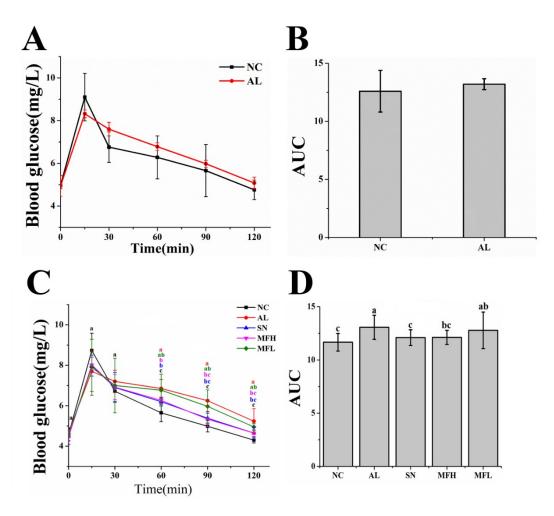


Fig.S4. Effects of MF on glucose intolerance in AH rats. (A) Blood glucose levels and (B) AUC in the middle of the experiment, (C) Blood glucose levels and (D) AUC in the end of the experiment. NC, normal group (0.9% normal saline 10 mL/kg/day); AL, alcohol group (40% alcohol 10 mL/kg/day); SN, silybin group (40% alcohol 10 mL/kg/day + SN 18.9 mg/kg/day); MFH, high-dose mangiferin group (40% alcohol 10 mL/kg/day + MF 100 mg/kg/day); MFL, low-dose mangiferin group (40% alcohol 10 mL/kg/day + MF 50 mg/kg/day). Values are presented as means \pm SD for all groups (n = 10). a-d Means in the same column followed by different letters are significantly different (p < 0.05) according to Tukey's multiple comparisons test.

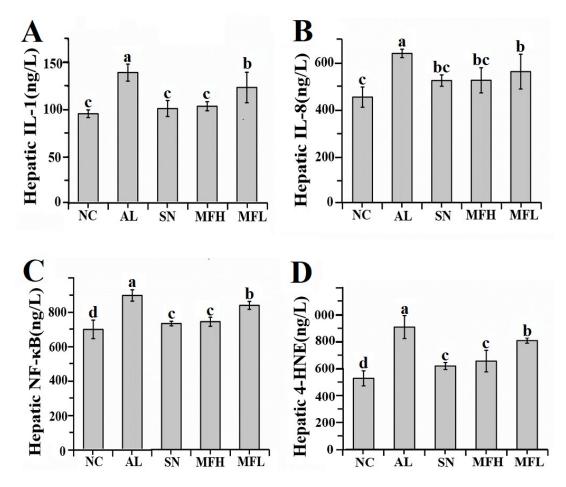


Fig.S5. Effects of MF on hepatic IL-1, IL-8, NF- κ B and 4-HNE in AH rats. The levels of (A) IL-1, (B) IL-8, (C) NF- κ B and (D) 4-HNE in liver at the end of the experiment. NC, normal group (0.9% normal saline 10 mL/kg/day); AL, alcohol group (40% alcohol 10 mL/kg/day); SN, silybin group (40% alcohol 10 mL/kg/day + SN 18.9 mg/kg/day); MFH, high-dose mangiferin group (40% alcohol 10 mL/kg/day + MF 100 mg/kg/day); MFL, low-dose mangiferin group (40% alcohol 10 mL/kg/day + MF 50 mg/kg/day). Values are presented as means ± SD for all groups (n = 10). a-d Means in the same column followed by different letters are significantly different (p < 0.05) according to Tukey's multiple comparisons test.