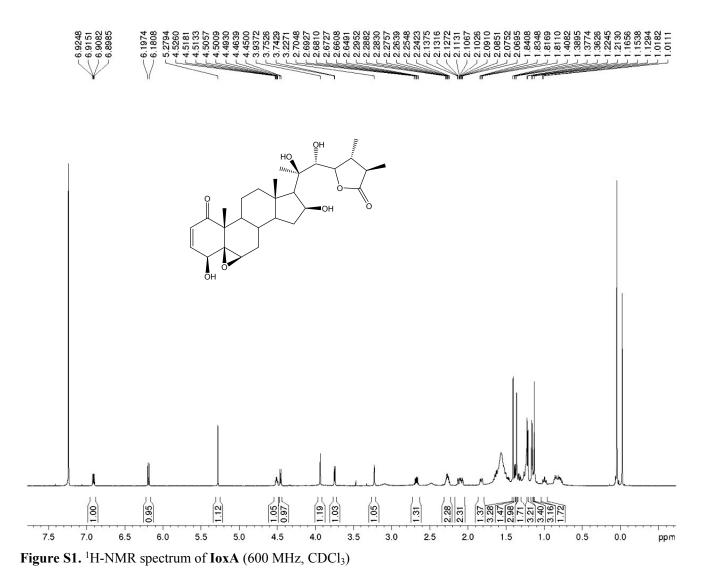
SUPPORTING INFORMATION

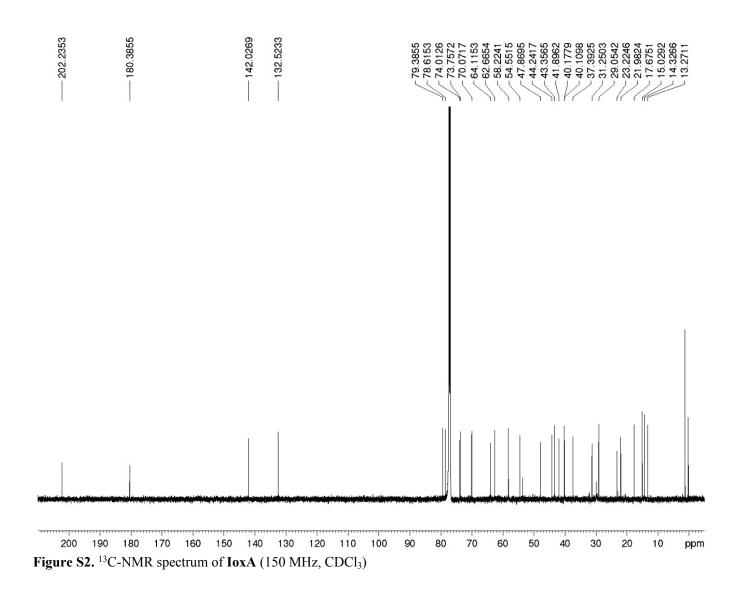
Ixocarpalactone A from dietary tomatillo inhibits pancreatic cancer growth by targeting PHGDH

Mengzhu Zheng,^{a#} Jing Guo,^{a#} Jiamin Xu,^{b#} Kaiyin Yang,^a Ruotian Tan,^a Xiaoxia Gu,^a Hua Li,^{*a} Li-Xia Chen^{*b}

^a Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.

^b Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design &
 Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang
 110016, China.


These authors contribute equally to this work.


Corresponding Authors

- * Tel: +86-24-23986463. E-mail: <u>syzyclx@163.com</u>. (Li-Xia Chen)
- * Tel: +86-24-23986463. E-mail: <u>li hua@hust.edu.</u>cn. (Li-Xia Chen)

No.	$\delta_{ m C}$	$\delta_{ m H} \left(J { m in} { m Hz} ight)$
1	202.2	
2	132.5	6.19 d (9.9)
3	142.0	6.92 dd (9.9,5.8)
4	70.1	3.75 d (5.8)
5	64.1	
6	62.6	3.22 br s
7	31.2	2.06-2.13 m 1.31
8	29.0	
9	44.2	
10	47.8	
11	21.9	1.81-1.84 m
12	40.1	2.06-2.13 m
13	43.3	
14	54.5	
15	37.3	2.24-2.29 m
16	73.7	4.52 m
17	58.2	1.38 d (7.2)
18	15.0	1.12 s
19	17.6	1.40 s
20	79.3	
21	23.2	1.36 s
22	74.0	4.46 s
23	78.6	3.93 br s
24	41.8	2.24-2.29 m
25	40.2	2.64-2.70 m
26	180.3	
27	14.3	1.16 d (7.1)
28	13.2	1.22 d (6.9)

Table S1. ¹H and ¹³C NMR Spectroscopic Data for IoxA (in CDCl₃; ¹H NMR, 600 MHz; ¹³C NMR, 150 MHz).

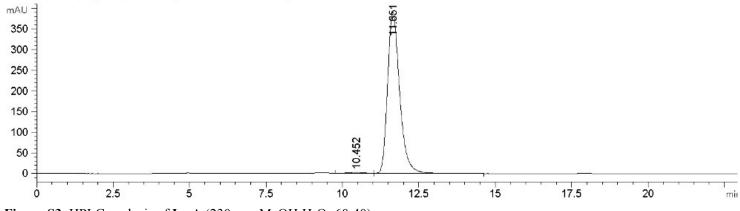


Figure S3. HPLC analysis of IoxA (230 nm, MeOH:H₂O=60:40)

				. 10 . 20 . 30 . 40 .
Score	Template	Links and tools	%id	First mafanlrkvlisdsldpccrkilqdgglqvvekqnlskeeliaelqdc
-117.000	1ygy_A mol:protein length:529 D-3-phosphoglycerate dehydrogenase	ali model follow	32	1MVSLPV VLIAD KLAPSTVAALGD-QVE V RWVDGPDRDKLLAAVPEA
-99.100	2g76_A mol:protein length:335 D-3-phosphoglycerate dehydrogenase	ali model follow	99	16 .SMANLRKVLISDSLDPCCRKILQDGGLQVVEKQNLSKEELIAELQDC
-95.800	<pre>1wwk_A mol:protein length:307 phosphoglycerate dehydrogenase</pre>	ali model follow	42	2 KRMKVLVAAPLHEKAIQVLKDAGLEVIYEEYPDEDRLVELVKDV
-94.000	<pre>2ekl_A mol:protein length:313 D-3-phosphoglycerate dehydrogenase</pre>	ali model follow	35	4YTVKALITDPIDEILIKTLREKGIQVDYMPEISKEELLNIIGNY
-81.000	<pre>1mx3_A mol:protein length:347 C-terminal binding protein 1</pre>	ali model follow	30	10 PRGSHMPLVALLDGRDCTEMPILKDVATVAFCDAQSTQEIHEKVLNEA
-81.000	<pre>6cdf_A mol:protein length:373 C-terminal-binding protein 1</pre>	ali model follow	30	10 PRGSHMPLVALLDGRDCTEMPILKDVATVAFCDAQSTQEIHEKVLNEA
-79.600	<pre>2ome_A mol:protein length:336 C-terminal-binding protein 2</pre>	ali model follow	30	1 .SMHPRPLVALLDGRDTVEMPILKDLATVAFCDAQSTQEIHEKVLNEA
-79.200	1hku_A mol:protein length:358 C-TERMINAL BINDING PROTEIN 3	ali model follow	31	14 .PMHPRPLVALLDGRDTVEMPILKDVATVAFCDAQSTQEIHEKVLNEA
-77.800	41cj_A mol:protein length:349 C-terminal-binding protein 2	ali model follow	30	16 .GSHPRPLVALLDGRDTVEMPILKDLATVAFCDAQSTQEIHEKVLNEA
-77.600	<pre>4njm_A mol:protein length:309 D-3-phosphoglycerate dehydrogenase, putative</pre>	ali model follow	31	6V V ITEKPFAENAVKGIREAGHEVMIEKYKKKEDVIERIKDA
-75,200	<u>3naq_A mol:protein length:357 Formate dehydrogenase</u>	ali model follow	29	26 PNFLGCVENALGIRDWLESQGHQVTDDKEGPDCELEKHIPDL
10.200	3wr5 A mol:protein length:406 Formate dehydrogenase	ali model follow	25	47 .AIDFTPGQLLGSVSGELGLRKYLEANFVVTSDKDGPDSVFEKELVDA
	<u>Swij</u> A moi.protein iengen.400 Formate denydrogenase			
-74.100	2 <u>d0i</u> A mol:protein length:333 dehydrogenase	ali model follow	28	2RPKVGVLLKMKREALEELKKY-ADVEIILYPSGEELKGVIGRF

FFAS is supported by the **NIH grant R01-GM087218-01 122351** jobs submitted since Jan 1, 2011
Comments and questions to: <u>webmaster</u>

Figure S4. Human PHGDH sequence searched in the FFAS server, finding the most resembling structure.

ID=34% pP=22.9 1ygy_b PHGDH_hs	LVLI.D.L.P#L.D#.V#.+L#A.##L#VRSAT.V.A-V#.AA.KL.#V. SLPVVLIADKLAPSTVAALGD-QVEVRWVDGPDRDKLLAAVPEADALLVRSATTVDAEVLAAAPKLKIVA MAFANLRKVLISDSLDPCCRK <mark>I</mark> LQDGG <mark>L</mark> QVVEKQNLSKEELIAELQDCEGLIVRSATKVTADVINAAEKLQVVG	RA
lygy_b PHGDH_hs	G.G#DNVD#-AAT.+G#LV#N.PN.#SAAE#.#.######.RQIP.A.AS#+W.RF.GTE#.GKT#G# 4 GVGLDNVDVDAATARGVLVVNAPTSNIHSAAEHALALLLAASRQIPAADASLREHTWKRSSFSGTEIFGKTVGV 7 GTGVDNVDLEAATRKGILVMNTPNGNSLSAAELTCGMIMCLARQIPQATASMKDGKWERKKFMGTELNGKTLGI	VG
lygy_b PHGDH_hs	LGRIGVA.R#FG##.YDP##SPA.#G#L.L###.#DFI.VH.PP.T.GL##AK 50 LGRIGQLVAQRIAAFGAYVVAYDPYVSPARAAQLGIELLSLDDLLARADFISVHLPKTPETAGLIDKEALAKTK 53 LGRIGREVATRMQSFGMKTIGYDPIISPEVSASFGVQQLPLEEIWPLCDFITVHTPLLPSTTGLLNDNTFAQCK	PG
lygy_b PHGDH_hs	V.#VN#ARGG#VDE.AL#.A#G.#A.LDVFEP#.D.#L#-#V#PHLGAST.EAQ.R#G#A 26 VIIVNAARGGLVDEAALADAITGGHVRAAGLDVFATEPCTDSPLFELAQVVVTPHLGASTAEAQDRAGTDVAES 29 VRVVNCARGGIVDEGALLRALQSGQCAGAALDVFTEEPPRDRALVDHENVISCPHLGASTKEAQSRCGEEIAVQ	VR
lygy_b PHGDH_hs	.##.G##VN###PW#.L#LG.L#.####.VG##L.#.#L.#	FS
lygy_b PHGDH_hs	.#A.V.#VNA.#L#.E.G#.#P##.AV.#.G.##.H.G.#.G.#.G##NG.# 76 AVIEDA-VTFVNAPALAAERGVTAEICKASESPNHRSVVD-VRAVGADGSVVTVSGTLYGPQLSQKIVQINGRH 31 EASKQADVNLVNAKLLVKEAGLNVTTSHSPAAPGEQGFGECLLAVALAGAPYQAVGLVQGTTPVLQGLNGAV	FD
lygy_b PHGDH_hs	R#.L#P.#L#LLAGV.##Q.SG#.########## 50LRAQGINLIIHYVDRPGALGKIGTLLGTAGVNIQAAQLSEDAEGPGATILLRLDQDVPDDVRTAIAAAV 55 PEVPLRRDLPLLLFRTQTSDPAMLPTMIGLLAEAGVRLLSYQTSLVSDGETWHVMGISSLLPSLEAWKQHV	D <mark>A</mark>
lygy_b PHGDH_hs	#.#.# 21 YKLEVVDLS 29 FQFHF	

Figure S5. Structure based sequence alignment of human PHGDH with *M. tuberculosis* PHGDH.

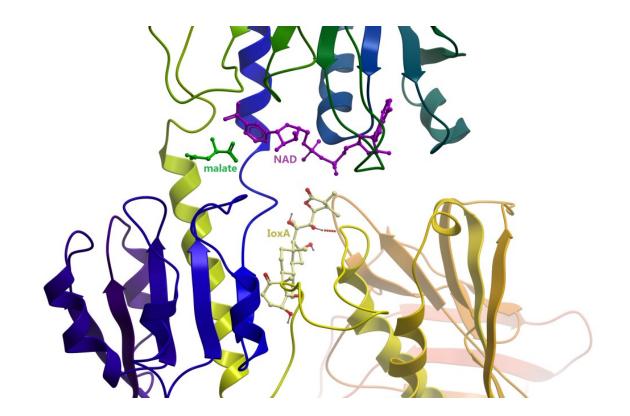


Figure S6. Binding mode of IoxA with human PHGDH. IoxA (yellow) was well fitted an allosteric site of the enzyme, where it was in the back side of the active site, where NAD (purple) and malate (green) were bound.