Electronic Supplementary Material (ESI) for Food & Function. This journal is © The Royal Society of Chemistry 2019

Supplementary Material

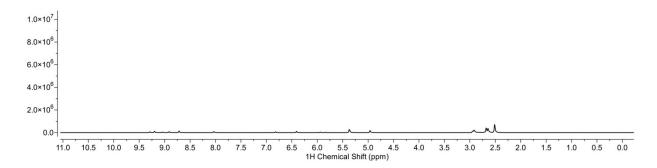
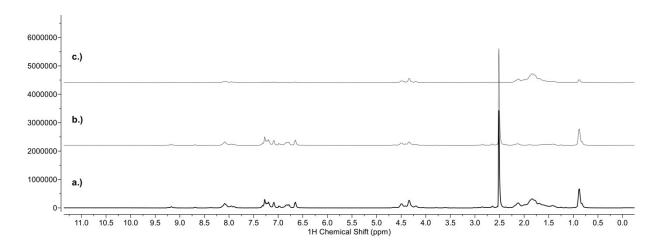
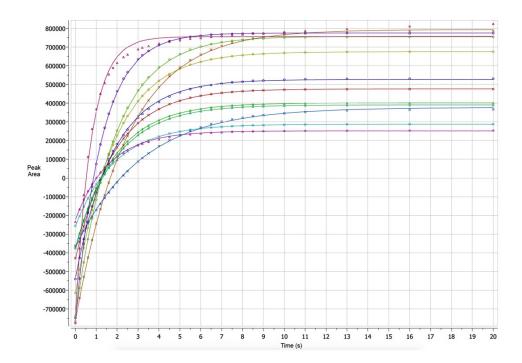




Figure S1 Difference Spectra of EGCG. A STD-NMR experiment on EGCG at 25 mM acquired in DMSO-d₆ in the absence of peptide receptor α_2 -gliadin (57-89) result in very small ligand signal in the difference spectra. This negative control demonstrates that the presence of ligand signal in the experiments run in the presence of α_2 -gliadin (57-89) appear as a result of peptide-ligand interaction and saturation transfer rather than direct saturation of the ligand. In STD-NMR experiments, the control difference spectra acquired with EGCG alone was subtracted from the experimental difference spectra.

Figure S2 STD-NMR of α 2-gliadin (57-89) in the Absence of Ligands. Off-resonance (reference) (a), on-resonance (b) and difference (c) spectra of α_2 -gliadin (57-89) at a

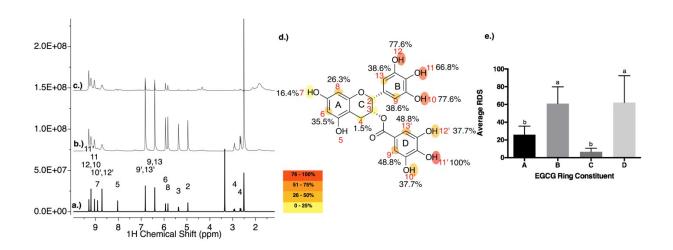

concentration of 0.25 mM in DMSO-d₆. Spectra are presented at 1:1:1 ratio. The presence of peptide signal in (c) results from the attenuation at the saturation point (1.8 ppm) and spin diffusion for the remaining signals.

Figure S3 Calculation of T_1 Proton Relaxation Time for Ligand EGCG. Inversion-Recovery was used to measure the relaxation time of EGCG signal in a sample of EGCG and α_2 -gliadin (57-89) at a 100:1 molar ratio in DMSO-d₆.

Signal	$T_1(s)$
H-2	1.27
H-4	0.76
H-5	1.60
H-6	1.93
H-7	1.89
H-8	3.14
H-9,13	1.83
H-9',13'	2.47
H-10,12	1.89
H-10',12'	1.79
H-11	1.88
H-11′	1.87

Table S1 T1 Proton Relaxation Times for Ligand EGCG. Values were calculated from Inversion-Recovery experiments (Figure S4). The 0.5-3 second relaxation rates of the EGCG protons ensure full relaxation of all of the protons within the 14-second recycle delay of the experiment.

Figure S4 EGCG/ α_2 g interactions are localized to galloyl moieties on EGCG. The following descriptions corresponds to spectra a-c, which were recorded in DMSO-d₆: (a) ¹H NMR spectrum of EGCG (25 mM). (b) Reference spectrum of EGCG and α_2 -gliadin (57-89) in a

100:1 molar ratio and (c) corresponding difference spectrum, shown at a 1:4 ratio. (d) Relative degree of saturation of EGCG hydrogens upon interaction with α_2 -gliadin (57-89) normalized to that of H-11'. The following hydrogens that produced detectable STD signals that are not listed are H-2, 6.7%; H-3, 6.0%. Saturation signals for H-10,12; H-9',13' and H-9,13 are quantified as averages due to overlapping signals. STD signal from H-5 could not be measured due to overlap with α_2 -gliadin (57-89) signal. (e) Average relative degrees of saturation per EGCG ring constituent. Different letters denote significant differences in relative degree of saturation between ring constituents (p \leq 0.05).