1	Electronic Supporting Information (ESI)					
2						
3	Multicompartment Emulsion Microdroplets for Programmed Release of					
4	Hydrophobic Cargoes					
5						
6	Xiao-Wei Chen, ^{†‡} Xue-Ying Ning, [‡] Yuan Zou, ^{†§} Xiao Liu, [†] and Xiao-Quan Yang* [†]					
7						
8	[†] Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety,					
9	Department of Food Science and Engineering, South China University of Technology, Guangzhou					
10	510640, P. R China					
11	[‡] Lipid Technology and Engineering, School of Food Science and Engineering, Henan University of					
12	Technology, Lianhua Road 100, Zhengzhou 450001, P. R China					
13	[§] Department of Bioengineering, College of Food Science, South China Agricultural University,					
14	Guangzhou, 510642, PR China					
15						
16	Corresponding to: Xiao-Quan Yang					
17	Tel: +86 20 87114262; Fax: +86 20 87114263					

18 E-mailaddress:fexqyang@scut.edu.cn,fexqyang@163.com

19 Environmental stress stability

The nanodroplet-stabilized multicompartment core/shell microdroplets were subjected to a range 20 of environmental stresses for monitoring their physical stability. pH stability. Newly prepared 21 microdroplets dispersions were placed into a series of different glass tubes, and then their pH values 22 were adjusted to obtain values ranging from 2 to 9 by addition of 1 M HCl or 1 M NaOH. Ionic 23 strength stability. Newly prepared microdroplets dispersions (pH 7) were transferred to glass tubes, 24 25 then varying levels of NaCl solution were added with salt levels ranging from 0 to 500 mM NaCl. Thermal processing stability. Newly prepared microdroplets dispersions (pH 7, 0 mM NaCl) were 26 distributed amongst a series of sealed glass tubes that were placed into water baths set at different 27 temperatures (25-100 °C) for 30 min. Agitation stability. Newly prepared microdroplets dispersions 28 (pH 7, 0 mM NaCl) were subjected to a series of stirring rate (0-600 rpm) with magnetic rotor for 30 29 min, and transferred to glass tubes for storage and analysis. 30

31

32	Table S1.	Physicochemical	characteristic	of studied	aroma com	pounds.
54		1 in y bio contentiour	onunuotoristio	or studied		poullab.

Fragrance compounds	2,3-Butanedione	cis-3-Hexen-1-ol	Ethyl butyrate	<i>d</i> -Limonene
Chemical formula	$C_4H_6O_2$	C ₈ H ₁₂₀	$C_6H_{12}O_2$	C10H16
Structural formula	H ₃ C CH ₃	Н3СОН	нас сна	H ₂ C
Boiling point (°C)	87	156.5	120	176
LogP	-1.80	1.34	1.85	4.57
Vapour pressure (Pa) at 25 °C	7572.71	317	1510	199.98
Solubility in water (g/L) at 25 °C	200	14.7	4.90	13.80
Odour descriptor	Butter, Fat	Fresh-green	Ethereal-fruity	Citrus-like

33 ^a P-Partition coefficient between octanol and water.

³⁴ ^bWater solubility at 25 °C.

рН	рН 2.0	рН 4.0	рН 7.0	рН 9.0
$D_{4,3}$	13.94±0.06a	13.97±0.30a	13.99±0.07a	14.14±0.12a
ionic concentration ^b	0 mmol	100 mmol	300 mmol	500 mmol
D _{4,3}	13.95±0.06a	14.04±1.00a	14.04±0.40a	14.23±0.39a
Temperture ^c	25 °C	50 °C	80 °C	100 °C
D _{4,3}	13.95±0.06a	14.23±0.12a	14.18±0.61a	14.40±0.15a
Agitation ^d	0 rpm	100 rpm	300 rpm	600 rpm
D _{4,3}	13.95±0.06a	13.83±1.01a	14.05±0.10a	13.94±1.04a

35 Table S2. Environmental stress (pH, ionic strength, temperature and external force) on the mean

37 ^a Data are the means of duplicate measurements and their standards deviations; ^b ionic is NaCl; ^c heat shock in

38 water baths for 30 min; ^d Agitation was operating by magnetic stirring for 30 min. Different letters in same

39 row indicates there is significant difference between the values (p < 0.05).

40

36

microdroplets diameter.a

41

42 **Figure S1**. Schematic illustration of the fabrication route for multicompartment core/shell 43 microdroplets over two-step processes by a bottom-up approach: Emulsification of *quillaja* saponin 44 (QS), a natural small molecule biosurfactant from the soapbark tree (*Quillaja Saponaria* Molina), 45 gave rise to the formation of nano-scale droplets. Then, the saponin-coated nanodroplets as 46 emulsifying agents were stable the oil-water interfaces and lead to the formation of microdroplets 47 with hierarchically multicompartment core/shell structure.

48

49 Figure S2. Schematics showing the detailed CTC-GC-FID procedures to acquire the fragrance

50 release profile.

51

52

53 Figure S3. Magnified bright field optical microscopy of microdroplets surface clearly showing the 54 nanodroplets arrangement. The arrow clearly indicates that a large amount of nanodroplets are 55 situated on the microdroplets surface.

56

57

58 Figure S4. FE-SEM micrographs of microdroplets stabilized by nanodroplets, where the oil phase

59 was replaced by cyclohexane and dried at 60 °C overnight.

60

61 Figure S5. Effect of saponin-coated nanodroplets concentration on the viscosity of emulsion droplets

62 at room temperature.