Supplementary Methods

1. Chemical and Reagents for the chromatographic analysis

Standards of p-hydroxybenzoic acid, protocatechuic acid, p-coumaric acid, syringic acid, chlorogenic acid, (+)-catechin, (-)-epicatechin were purchased from Sigma-Aldrich (St Louis, MO, USA), and vanillic acid from Fluka (Buchs, Switzerland). Dimer B2, apigenin-7-O-glucoside, luteolin-7-O-glucoside, naringenin, eriodictyol, quercetin, quercetin-3-O-glucoside, and kaempfeorl-3-O-rutinoside were purchased from Extrasynthese (Genay, France). The standards were prepared in methanol and a stock standard solutions was dissolved in acetone/Milli-Q water/acetic acid (70/29.5/0.5, v/v/v).

Acetone and glacial acetic acid were HPLC grade and were provided by Scharlau Chemie (Barcelona, Spain). Acetonitrile (HPLC grade) was from Romyl (Teknokroma Barcelona, Spain). Water was of Milli-Q quality (Millipore Corp., Bedford, MA, USA).

2. Liquid chromatography (UPLC-ESI-MS/MS) conditions

The phenolic compounds were analyzed by AcQuity Ultra-Performance ${ }^{\text {TM }}$ liquid chromatography (UPLC) coupled to a triple quadrupole detector (TQD) mass spectrometer (Waters, Milford). The analytical column was an AcQuity BEH C_{18} column ($100 \mathrm{~mm} \times 2.1 \mathrm{~mm}$ i.d., $1.7 \mu \mathrm{~m}$,) equipped with a VanGuard ${ }^{\text {TM }}$ Pre-Column AcQuity BEH C $18(2.1 \times 5 \mathrm{~mm}, 1.7 \mu \mathrm{~m})$, also from Waters. During the analysis, the column was kept at $30^{\circ} \mathrm{C}$ and the flow rate was 0.3 mL min- 1 . The mobile phase was 0.2% acetic acid (eluent A), and acetonitrile (eluent B). The elution gradient was $0-5$ $\min , 5-10 \%$ B; 5-10 min, $10-12.4 \%$ B; 10-18 min, $12.4-28 \%$ B; 18-23 min, $28-100 \%$ B; 2325.5 min, 100% B isocratic; $25.5-27 \mathrm{~min}, 100-5 \% \mathrm{~B}$; and $27-30 \mathrm{~min}, 5 \% \mathrm{~B}$ isocratic.

Tandem MS analyses were carried out on a triple quadrupole detector (TQD) mass spectrometer (Waters, Milford, MA, USA) equipped with a Z-spray electrospray interface (ESI). Ionization was achieved using the electrospray interface operating in the negative mode $[\mathrm{M}-\mathrm{H}]^{-}$and the data
were acquired through selected reaction monitoring (SRM). The ionization source parameters were capillary voltage 3 kV , source temperature $150{ }^{\circ} \mathrm{C}$ and desolvation gas temperature $400{ }^{\circ} \mathrm{C}$, with a flow-rate of $800 \mathrm{l} / \mathrm{h}$. Nitrogen (99.99% purity, N 2 LCMS nitrogen generator, Claind, Como, Italy) and argon ($\geq 99.99 \%$ purity, Aphagaz, Madrid, Spain) were used as cone and collision gases, respectively. The SRM transitions and the individual cone voltage and collision energy for each phenolic compound were evaluated by infusing $10 \mathrm{mg} / /$ of each compound in order to obtain the best instrumental conditions. Two SRM transitions were selected, the most sensitive transition was used for quantification, and a second one for confirmation purposes. The SRM transition for quantification, as well as the individual cone voltage and collision energy for each phenolic compound are shown in Supplementary Table 1. The dwell time established for each transition was 30 ms . Data acquisition was carried out with the MassLynx 4.1 software.

The phenolic compounds were quantified by using own calibration curve. An exception of (epi)catechin glucoside, which was tentatively quantified by using the calibration curve of (epi)catechin; trimer and tetramer by using the calibration curve of dimer B_{2}; protocatechuic acid glucoside by using the calibratoun curve of protocatechuic acid; apigenin-C-glucoside, apigenin-C-glucoside-(C-arabinoside), and apigenin-diC-glucoside by using the calibratoun curve of apigenin-7-O-glucoside; naringenin glucoside by using the calibration curve of naringenin; eriodictyol glucoside by using the calibration curve of eriodictyol; quercetin arabinoside by using the calibration curve of quercetin-3-O-glucoside; dihydroquercetin by using the calibration curve of quercetin; and clovamide by using the calibration curve of epicatehin.

Supplementary Tables

Supplementary Table 1 Optimized RM conditions for the quantification of the studied phenolic compounds by UPLC-MS/MS.

Compound	SRMquantification	Cone voltage (V)	Collision energy (eV)
p-Hydroxybenzoic acid	$137>93$	40	15
Protocatechuic acid	$153>109$	40	15
Protocatechuic acid glucoside	$315>153$	40	15
p-Coumaric acid	$163>119$	40	10
Vanillic acid	$167>152$	40	15
Syringic acid	$197>182$	30	15
Chlorogenic acid	$353>191$	40	15
Catechin	$289>245$	40	15
Epicatechin	$289>245$	40	15
Catechin glucoside	$451>289$	40	20
Epicatechin glucoside	$451>289$	40	20
Epigallocatechin	$305>125$	40	15
Dimer	$577>289$	40	20
Trimer	$865>287$	60	20
Tetramer	$1153>865$	40	20
Apigenin-7-O-glucoside	$431>268$	40	15
Apigenin-C-glucoside	$431>311$	40	15
Apigenin-C-glucoside-C-arabinoside	$563>353$	40	30
Apigenin-dic-glucoside	$593>353$	40	30
Luteolin-7-O-glucoside	$447>285$	40	15
Naringenin	$271>151$	40	15
Naringenin glucoside	$433>271$	40	10
Eriodictyol	$287>151$	40	15
Eriodictyol glucoside	$449>287$	40	15
Quercetin	$301>151$	40	15
Dihydroquercetin	$303>285$	40	10
Quercetin arabinoside	$433>300$	40	10
Quercetin glucoside	$463>300$	40	20
Kaempferol rutinoside	$593>285$	40	25
Clovamide	$358>178$	40	25
			15

Supplementary Table 2. Specific gene expression probes used for the quantitative real time PCR analyses.

Gene	Description	TaqMan $^{\text {TM }}$ Gene Expression Assay
Acox1	Acyl-Coenzyme A oxidase 1, palmitoyl	Rn01460628_m1
SIc27a4	Solute carrier family 27 member 4	Rn01438951_m1
Adipoq	Adiponectin, C1Q and collagen domain containing	Rn00595250_m1
Cebpa	CCAAT/enhancer binding protein (C/EBP), alpha	Rn00560963_s1
Fasn	Fatty acid synthase	Rn00569117_m1
Lep	Leptin	Rn00565158_m1
Pparg	Peroxisome proliferator activated receptor gamma	Rn00440945_m1
Srebf1	Sterol regulatory element binding transcription factor 1	Rn01495769_m1
Tbp	TATA box binding protein. Housekeeping gene control	Rn01455646_m1

Supplementary table 3. RQ-PCR analysis data obtained in retroperitoneal fat samples from HFS, HFS-CCL and HFS-CCH groups. Results are expressed as the fold-difference gene expression levels of each gene in the HFS-CCL and HFS-CCH groups compared with the HFS, calculated with the $2-\Delta \Delta C t$ method.

	Acox1	Slc27a4	Adipoq	Cebpa	Fasn	Lep	Pparg	Srebf1
Anova	ns	ns	0.016	<0.001	0.017	ns	ns	ns
HFS ($\mathrm{n}=12$)	1.00 ± 0.16	1.00 ± 0.64	1.00 ± 0.06 a	$1.00 \pm 0.11^{\text {a }}$	$1.00 \pm 0.14{ }^{\text {a }}$	1.00 ± 0.11	1.00 ± 0.19	1.00 ± 0.18
HFS-CCL ($\mathrm{n}=11$)	0.79 ± 0.09	0.91 ± 0.26	$0.77 \pm 0.04{ }^{\text {b }}$	$0.43 \pm 0.04{ }^{\text {b }}$	$0.59 \pm 0.06{ }^{\text {b }}$	0.89 ± 0.09	0.99 ± 0.13	0.98 ± 0.09
HFS-CCH ($\mathrm{n}=12$)	0.84 ± 0.07	0.92 ± 0.19	$0.70 \pm 0.02^{\text {b }}$	$0.48 \pm 0.04{ }^{\text {b }}$	$0.70 \pm 0.09 \mathrm{ab}$	0.92 ± 0.11	1.03 ± 0.22	0.96 ± 0.08

${ }^{a}$ All the results are expressed as the mean \pm SD.
$\Delta \Delta C t$ values are calculated as the difference between dCt HFS - dCt HFS-CCL or CCH, for each gene.
dCt values are obtained from the difference of each gene problem with the housekeeping gene (Tbp, TATA box binding protein).
Statistical analyses were performed using the ANOVA test followed by Student-Newman-Keuls (SNK) test to detect differences between groups. Superscript letters a and b designate groups in which statistically significant differences were observed.
HFS, high-fat-sucrose; CCL, cocoa low dose; CCH, cocoa high dose
Acox1, Acyl-Coenzyme A oxidase 1, palmitoyl ; Slc27a4, Solute carrier family 27 member 4; Adipoq, Adiponectin; Cebpa, CCAAT/enhancer binding protein, alpha; Fasn, Fatty acid synthase; Lep, Leptin; Pparg, Peroxisome proliferator activated receptor gamma; Srebfi, Sterol regulatory element binding transcription factor 1

Supplementary Table 4. Absolute and relative mean organ weights of rats after a dosing period of 60 days.

	Control	CC Low dose ($125 \mathrm{mg} / \mathrm{kg}$)	CC Medium dose ($250 \mathrm{mg} / \mathrm{kg}$)	CC High dose ($500 \mathrm{mg} / \mathrm{kg}$)
Spleen				
Absolute weight (g)	0,618 $\pm 0,064$	0,605 $\pm 0,050$	0,631 $\pm 0,040$	0,608 $\pm 0,076$
Relative to body weight (\%)	0,173 $\pm 0,016$	$0,160 \pm 0,011$	0,176 $\pm 0,009$	0,158 $\pm 0,018$
Heart				
Absolute weight (g)	1,050 $\pm 0,076$	1,038 $\pm 0,110$	1,061 $\pm 0,099$	1,122 $\pm 0,092$
Relative to body weight (\%)	0,294 $\pm 0,029$	$0,274 \pm 0,016$	0,294 $\pm 0,014$	$0,292 \pm 0,013$
Liver				
Absolute weight (g)	9,958 $\pm 0,785$	10,709 $\pm 0,928$	9,590 $\pm 0,952$	9,987 \pm 1,127
Relative to body weight (\%)	2,782 $\pm 0,160$	$2,832 \pm 0,111$	2,658 $\pm 0,116$	2,594 $\pm 0,202$
Thymus				
Absolute weight (g)	0,382 $\pm 0,041$	0,383 $\pm 0,051$	0,434 $\pm 0,077$	0,440 $\pm 0,063$
Relative to body weight (\%)	0,107 $\pm 0,011$	$0,101 \pm 0,011$	$0,120 \pm 0,016$	$0,115 \pm 0,017$
Kidney				
Absolute weight (g)	1,017 $\pm 0,237$	0,998 $\pm 0,057$	1,008 $\pm 0,094$	0,966 $\pm 0,134$
Relative to body weight (\%)	0,267 $\pm 0,024$	0,264 $\pm 0,012$	$0,279 \pm 0,013$	$0,251 \pm 0,032$
Adrenal				
Absolute weight (g)	0,055 $\pm 0,010$	0,066 $\pm 0,020$	0,047 $\pm 0,014$	0,060 $\pm 0,024$
Relative to body weight (\%)	0,015 $\pm 0,002$	$0,017 \pm 0,005$	$0,013 \pm 0,003$	$0,015 \pm 0,006$
Testicle				
Absolute weight (g)	1,817 $\pm 0,115$	1,817 $\pm 0,068$	1,813 $\pm 0,188$	1,844 $\pm 0,067$
Relative to body weight (\%)	$0,509 \pm 0,042$	$0,482 \pm 0,022$	$0,503 \pm 0,029$	$0,481 \pm 0,019$

Relative to body weight(
Data are mean \pm SD.

Supplementary Table 5. Clinical biochemistry of rats at day 60 after the starting dosing period.

Day 60	Control	CC Low dose ($125 \mathrm{mg} / \mathrm{kg}$)	CC Medium dose ($250 \mathrm{mg} / \mathrm{kg}$)	CC High dose ($500 \mathrm{mg} / \mathrm{kg}$)
Glucose (mg/dL)	150 ± 40	162 ± 33	142 ± 24	143 ± 43
Cholesterol (mg/dL)	82 ± 9	80 ± 10	91 ± 20	77 ± 6
Albumin (g/dL)	$4,1 \pm 0,2$	$4,1 \pm 0,1$	$4,2 \pm 0,1$	$4,0 \pm 0,1$
Urea (mg/dL)	51 ± 7	48 ± 9	47 ± 8	52 ± 5
Aspartate Aminotransferase (U/L)	76 ± 8	89 ± 10	105 ± 43	94 ± 32
Alanine Aminotransferase (U/L)	48 ± 9	43 ± 6	54 ± 13	58 ± 23
Total Bilirubin (mg/dL)	$0,12 \pm 0,04$	$0,11 \pm 0,02$	$0,11 \pm 0,01$	0,15 $\pm 0,05$
Calcium (mg/dL)	10,07 $\pm 0,17$	10,35 $\pm 0,12$ (*)	10,25 $\pm 0,16$	$9,84 \pm 0,11$
Creatinine (mg/dL)	0,48 $\pm 0,06$	$0,46 \pm 0,06$	$0,46 \pm 0,08$	$0,48 \pm 0,09$
Total Protein (g/dL)	6,2 $\pm 0,3$	6,3 $\pm 0,2$	6,3 $\pm 0,1$	6,2 $\pm 0,1$
Sodium (mmol/L)	144 ± 5	$\mathbf{1 3 9} \pm 1$ (**)	144 ± 4	144 ± 5
Potasium ($\mathrm{mmol} / \mathrm{L}$)	$4,07 \pm 0,24$	$4,28 \pm 0,17$	$4,12 \pm 0,30$	4,36 $\pm 0,20$
Clorine (mmol/L)	95 ± 1	95 ± 1	95 ± 1	95 ± 1

Data are mean \pm SD. In bold, values that were significantly different (Mann-Whitney U Test) from the control group (${ }^{*} \mathrm{p}<0.05$, ** $p<0.01$).

Supplementary table 6. Haematological profile of rats at day 60 after the starting dosing period.

	Control	CC Lowdose ($125 \mathrm{mg} / \mathrm{kg}$)	CC Medium dose ($250 \mathrm{mg} / \mathrm{kg}$)	CC High dose ($500 \mathrm{mg} / \mathrm{kg}$)
RBC ($\times 10^{6} \mathrm{cel} / \mathrm{mL}$)	9,87 $\pm 0,36$	9,08 $\pm 1,23$	9,79 $\pm 0,49$	9,82 $\pm 0,09$
WBC ($\times 10^{3} \mathrm{cel} / \mathrm{mL}$)	8,78 $\pm 1,83$	$8,52 \pm 2,03$	$8,32 \pm 1,01$	$8,47 \pm 1,90$
Haemoglobin (g/dL)	$16,8 \pm 1,1$	15,9 $\pm 2,3$	17,4 $\pm 0,7$	17,0 $\pm 0,8$
Haematocrit (\%)	$48,5 \pm 2,1$	$45,1 \pm 6,1$	$48,9 \pm 1,8$	$47,2 \pm 2,0$
MCV (fi)	$49,2 \pm 0,5$	$49,6 \pm 1,1$	$50,0 \pm 3,2$	$48,1 \pm 1,9$
MCH (pg)	$17,1 \pm 1,3$	17,5 $\pm 0,4$	17,8 $\pm 1,0$	17,3 $\pm 0,7$
MCHC (g/dL)	$34,7 \pm 2,6$	$35,3 \pm 0,5$	$35,6 \pm 0,5$	$36,1 \pm 0,2$
Platelets ($\times 10^{3} \mathrm{cel} / \mathrm{mL}$)	743 ± 296	695 ± 273	787 ± 158	722 ± 176
Eosinophils (\%)	$2,2 \pm 1,5$	1,7 $\pm 0,7$	$\mathbf{1 , 1} \pm \mathbf{0 , 2}$ (*)	1,8 $\pm 0,8$
Neutrophils (\%)	$16,6 \pm 1,3$	$16,0 \pm 2,7$	18,9 $\pm 3,8$	16,2 $\pm 2,3$
Lymphocytes (\%)	$78,2 \pm 3,3$	$78,5 \pm 1,5$	$76,7 \pm 3,9$	$78,7 \pm 2,2$
Monocytes (\%)	$3,0 \pm 1,4$	$3,7 \pm 0,8$	$3,3 \pm 0,8$	$3,3 \pm 0,6$

Data are mean \pm SD
RBC, red blood cells; WBC, white blood cells; MCV, mean corpuscular volume; MCH, mean cell haemoglobin; MCHC, mean corpuscular haemoglobin concentration. In bold, values that were significantly different (Mann-Whitney U Test) from the control group (${ }^{*} p<0.05,{ }^{* *} p<0.01$).

