Electronic Supplementary Material (ESI) for Food \& Function.
This journal is © The Royal Society of Chemistry 2019

Metabolic profiling of a polyphenolic-rich fraction of Coccinia grandis leaves using LC-ESI-MS/MS and in-vivo validation of its antimicrobial and wound healing activities

Somaia A. Al-Madhagy ${ }^{\text {a, } b,}$, Nada M. Mostafaa ${ }^{\text {a }}$, Fadia S.Youssef ${ }^{\text {a }}$, Ghada E. A. Awad ${ }^{\text {c }}$,
Omayma A. Eldahshan ${ }^{*} \mathrm{a}, \mathrm{d}$ and Abdel Nasser B. Singab*a,d

${ }^{\text {a }}$ Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo-11566, Egypt
b Department of Pharmacognosy, Faculty of Pharmacy, Sana'a University, Sana'a, Yemen
c Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug industries research Division, National Research Centre. Giza, Egypt d Center for Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt. E-mail: dean@pharma.asu.edu.eg

A
(Time: 9.95) combine (570:576-(532:535+607:610))

 $\left[\mathrm{Y}-\mathrm{CO}+\mathrm{H}_{2} \mathrm{O}\right]-\mathrm{m} / \mathrm{z}=255.2$
B

Figure S1 Fragmentation pattern of peak (1) in total ion chromatogram of LC-ESI-MS, tentatively identified as Quercetin-hexoside deoxyhexoside (rutin) before fragmentation (A), after fragmentation (B)

Figure S2 Fragmentation pattern of peak (2) in total ion chromatogram of LC-ESI-MS, tentatively identified Quercetin-hexoside deoxyhexoside (quercetin -3-Oneohesperidoside) before fragmentation (A), after fragmentation (B).

Figure S3 Fragmentation pattern of peak (3) in total ion chromatogram of LC-ESI-MS, tentatively identified as Kaempferol-hexoside deoxyhexoside (kaempferol-3-O-rutinoside) before fragmentation (A), after fragmentation (B).
$\underset{63}{\text { Peak ID Compound }}{\underset{\text { Time }}{11.64} \text { Mass Found }}^{\text {63: }}$
63:(Time: 11.63) Combine (667:673-(627:630+716:719))

B

Figure S4 Fragmentation pattern of peak (4) in total ion chromatogram of LC-ESI-MS spectrum, tentatively identified as Kaempferol-hexoside deoxyhexoside (kaempferol -3-O-neohesperidoside) before fragmentation (A), after fragmentation (B).

Peak ID Compound Time Mass Found

74: (Time: 13.59) Combine (780:786-(738:741+823:826))
A

2:MS ES-
2.4e+006
Kaempferol- hexoside

B

Figure S5 Fragmentation pattern of peak (5) in total ion chromatogram of LC-ESI-MS, tentatively identified as kaempferol-hexoside before fragmentation (A), after fragmentation (B).

Peak ID Compound $\begin{aligned} & 79 \\ & \begin{array}{c}\text { Time } \\ 14.42\end{array}\end{aligned}$ Mass Found
79 : (Time: 14.39) combine (826:832-(794:797+873:876))
A

7.0
-

B

Figure S6 Fragmentation pattern of peak (6) in total ion chromatogram of LC-ESI-MS, tentatively identified as kaempferol-3-O- β-D-glucoside before fragmentation (A), after fragmentation (B)

Peak 10 Compound Time Mass Found
81:(7ime: 14.91) combine (856:862-(815:818+897:900)

A

5:DAU 539 ES-
4. 1 e+004
Figure S7 Fragmentation pattern of peak (7) in LC-MS spectrum, tentatively identified as oleuropein before fragmentation (A), after fragmentation (B).
Peak id Compound ${ }_{93}{ }_{16} \mathrm{Time}_{169}$ Mass Found
93: (Time: 16.58) combine (952:958-(914:917+992:995))
A

B

Figure S8 Fragmentation pattern of peak (8) in LC-MS spectrum, tentatively identified as ligstroside before fragmentation (A), after fragmentation (B).

