Supporting Information for

Protective effects of oligopeptides from two sea cucumber species against diet-induced hyperuricemic and renal inflammation in mice

Haitao Wan^{1, 2}, Jiaojiao Han^{1, 2}, Shasha Tang^{1, 2}, Wei Bao^{1, 2}, Chenyang Lu^{1, 2*},

Jun Zhou^{1, 2}, Tinghong Ming^{1, 2}, Ye Li^{1, 2}, Xiurong Su^{1, 2*}

¹State Key Laboratory for Managing Biotic and Chemical Threats to the

Quality and Safety of Agro-products, Ningbo University, Ningbo, China

²School of Marine Science, Ningbo University, Ningbo, China

*Corresponding author

Dr. Chenyang Lu

Email address: luchenyang@nbu.edu.cn (C.Y.L.)

Postal address: Ningbo University, 169 Qixing South Road, Ningbo, China

Dr. Xiurong Su

E-mail address: suxiurong_public@163.com (X.R.S.)

Postal address: Ningbo University, 169 Qixing South Road, Ningbo, China

Supplementary Table S1. Primers used in this study.

Gene	Primer
β-actin	CAGGCATTGCTGACAGGATG / TGCTGATCCACATCTGCTGG
PRPS	CGAGTCTTCTCGGCCAACTC / CGAGTCTTCTCGGCCAACTC
PNP	AGGCCCCAACTTTGAGACTG / ACAGTGCCTTGCGACGATAA
XOD	TATGCATCCAAGGCTGTCGG / GATCCACACAAGCGTTTCGG
OAT4	GCATAATACCGAGGGGCCAT / CCGTCTGCCGAATCATTGTG
GLUT9	GTCGGCATGGGTTTCCAGTA / GGAAGGCAGCTGAGATCTGG
URAT1	ACACAGCCAGTCTCTTGATGGAGTG / CCGTGATGAGCCAGCGTGCC
ABCG2	TTCTGGTGGAGAGAAACGCC / TCTGGGGCCACAACTGTAGA
MRP4	TCAGCAACTCGTCTTCCCAC / GGCCAGTGCAGATACATGGT
OAT1	GCTGGTACTCCTCCTCTGGA / TCCATGAC CAGCCCGTAGTA
IL-1β	TGTTGCCCTCAGCAGTAAGG / GCACCAGCACATTGCTTTGA
IL-2	ACCCACTTCAAGCTCCACTT / TCCTGGGGAGTTTCAGGTTC
IL-6	GCCAGAGTCCTTCAGAGAGA / GGAGAGCATTGGAAATTGGGG
TGF-β	AGCCGGCAAAGGAGCAG / CCAAGAAGTCCCCACGTCTC
IL-10	AAGGGTTACTTGGGTTGCCA / GAAATCGATGACAGCGCCTC
TLR4	GGACTATGTGATGTGACCATTGAT / TTATAGATACACCTGCCAGAGACA
MyD88	CTACAGAGCAAGGAATGTGACT / ACCTGATGCCATTTGCTGTCC
NF-kB	GTCCTCCGTGAGCTGCTG / GGGATGGCCTCAAGAAGGAG

Supplementary Table S2. The alpha-diversity of each group. The data are presented as the mean \pm SD (n=8). Different letters correspond to statistically significant differences (*p*<0.05) between groups.

	Observed_species	Shannon	Simpson	Chao1
Control	992.50±80.63ª	7.27±0.67ª	0.97±0.02ª	1275.72±50.49 ^a
Model	567.00±123.47b	4.29±0.73 ^b	0.81±0.08 ^b	883.24±184.36 ^b
EH-JAP	695.75±46.92°	5.49±0.35 ^c	0.90±0.03ª	1084.89±73.06 ^c
EH-LEU	636.00±140.09°	5.15±0.74°	0.88±0.08 ^b	927.35±156.87 ^b

Supplementary Table S3. Relative abundance of the top four phyla. The data are presented as the mean \pm SD (n=8). Different letters correspond to statistically significant differences (*p*<0.05) between groups.

Phylum	Control (%)	Model (%)	EH-JAP (%)	EH-LEU (%)
Bacteroidetes	63.79±12.78ª	32.50±9.80 ^b	42.60±7.69°	44.14±7.56 ^c
Firmicutes	29.24±12.85ª	61.21±8.82 ^b	44.91±6.60 ^c	48.39±6.90°
Proteotacteria	3.91±1.81 ^{ab}	2.83±1.09ª	5.52±2.42 ^b	2.44±1.07ª
Actinobacteria	2.19±1.15 ^a	2.79±1.93ª	3.51±1.67ª	3.17±2.48ª
others	0.87±0.69ª	1.48±0.85ª	3.47±1.79 ^b	1.86±1.74 ^{ab}

Supplementary Table S4. Relative abundance of the top eight genera.

The data are presented as the mean \pm SD (n=8). Different letters correspond to statistically significant differences (*p*<0.05) between groups.

Genus	Control (%)	Model (%)	EH-JAP	
			(%)	ЕП-LEU (%)
Lactobacillus	52.34±4.96ª	29.49±7.05 ^b	46.94±4.68 ^c	48.10±8.43 ^{ac}
Porphyromonadaceae	9.44±3.36ª	23.10±4.89 ^b	8.80±5.81ª	7.69±4.01ª
Lachnospiraceae	5.98±2.20ª	4.09±3.84 ^a	10.13±2.57 ^b	5.57±3.76 ^a
Coriobacteriaceae	2.98±1.63 ^{abc}	5.86±5.23 ^b	4.66±3.12 ^c	5.31±1.54 ^{bc}
Clostridial	7.79±4.74 ^a	4.39±2.16 ^a	5.94±3.18 ^a	5.51±0.87ª
Bacteroides	3.33±1.91ª	11.89±5.31 ^b	2.87±1.83 ^a	3.12±3.55 ^a
Ruminococcaceae	3.32±1.83ª	2.84±2.22 ^a	2.46±0.95 ^a	6.05±1.82 ^b
Streptococcus	5.01±3.64ª	1.07±1.17 ^{bc}	1.05±0.86 ^b	2.65±1.45 ^{ab}
others	9.80±4.12 ^a	17.26±4.86 ^b	16.80±5.36 ^b	16.00±3.77 ^b

Supplementary Table S5. Key phylotypes of gut microbiota responding to EH-JAP and EH-LEU as determined by redundancy analysis. The data are presented as the mean \pm SD (n=8). Different letters correspond to statistically significant

differences (*p*<0.05) between groups.

OTUs	Genus	Control (%)	Model (%)	EH-JAP (%)	EH-LEU (%)
OTU05673	Porphyromonadaceae_unclassified	1.67±0.39ª	0.03±0.05 ^b	0.02±0.03 ^b	0.15±0.22 ^b
OTU19609	Porphyromonadaceae_unclassified	1.53±0.45 ^a	0.05±0.07 ^b	0.03±0.04 ^b	0.06±0.07 ^b
OTU19642	Porphyromonadaceae_unclassified	0.16±0.16 ^a	0.00±0.00 ^b	0.00 ± 0.00^{b}	0.01±0.02 ^b
OTU33897	Porphyromonadaceae_unclassified	0.38±0.24 ^{ab}	0.01±0.02 ^c	$0.00\pm0.00^{\text{ac}}$	0.02±0.02 ^b
OTU17976	Porphyromonadaceae_unclassified	0.26±0.20 ^a	0.04±0.05 ^b	0.05 ± 0.03^{b}	0.38±0.24 ^a
OTU16644	Porphyromonadaceae_unclassified	0.11±0.15 ^a	0.02±0.01ª	0.02±0.02 ^a	0.17±0.12 ^b
OTU00018	Porphyromonadaceae_unclassified	5.11±2.34 ^a	0.72±0.28 ^b	1.56±1.23 ^{bc}	2.37±1.49°
OTU00024	Porphyromonadaceae_unclassified	0.06±0.04 ^a	0.00±0.00 ^b	0.00 ± 0.00^{b}	0.02±0.03 ^b
OTU20440	Porphyromonadaceae_unclassified	0.06±0.03 ^a	0.01±0.01 ^b	0.00 ± 0.00^{b}	0.01±0.01 ^b
OTU25688	Porphyromonadaceae_unclassified	0.17±0.07ª	0.02±0.02 ^b	0.06 ± 0.06^{b}	0.26±0.15 ^a
OTU22251	Barnesiella	0.31±0.21ª	0.02±0.02 ^b	0.09±0.10 ^b	0.23±0.14 ^a
OTU23747	Porphyromonadaceae_unclassified	0.05±0.02ª	0.02±0.02 ^b	0.02±0.01 ^b	0.12±0.05 ^a

OTU38604	Porphyromonadaceae_unclassified	0.25±0.14 ^a	0.01±0.02 ^b	0.00 ± 0.00^{b}	0.24±0.36 ^{ab}
OTU39302	Porphyromonadaceae_unclassified	0.04±0.03 ^a	0.00±0.00 ^b	0.00±0.00 ^c	0.07±0.04ª
OTU31345	Porphyromonadaceae_unclassified	0.15±0.06 ^a	0.00±0.00 ^b	0.00 ± 0.00^{b}	0.07±0.07 ^c
OTU32711	Porphyromonadaceae_unclassified	0.27±0.23 ^a	0.00±0.00 ^b	0.07±0.07°	0.27±0.29 ^c
OTU34632	Barnesiella	0.26±0.22 ^a	0.00±0.00 ^b	0.05±0.05 ^c	0.25±0.30 ^{ac}
OTU20293	Rikenella	0.04±0.05 ^a	0.02±0.02 ^a	0.29±0.21 ^b	2.99±4.91ª
OTU22178	Rikenella	0.10±0.06 ^a	0.00±0.00 ^b	0.03±0.02°	0.01±0.01 ^d
OTU32879	Rikenella	0.18±0.09 ^a	0.00±0.00 ^b	0.00±0.01 ^b	0.00 ± 0.00^{b}
OTU20479	Rikenella	0.37±0.33 ^a	0.00±0.00 ^b	0.04±0.05 ^c	0.07 ± 0.10^{bc}
OTU22899	Rikenella	0.12±0.04 ^a	0.02±0.03 ^b	0.01 ± 0.02^{b}	0.03±0.03 ^b
OTU25520	Rikenella	0.11±0.06 ^a	0.01±0.02 ^{bc}	0.00 ± 0.00^{b}	0.02±0.02 ^c
OTU26606	Bacteroides	0.00±0.00 ^a	0.09±0.06 ^b	0.02±0.03ª	0.00±0.01ª
OTU57987	Bacteroides	0.00±0.00 ^a	0.18±0.13 ^b	0.00±0.00 ^a	0.00±0.00 ^a
OTU23864	Bacteroides	0.00±0.00 ^a	0.05±0.03 ^b	0.02±0.01°	0.00±0.00 ^d
OTU31444	Bacteroides	0.07±0.05 ^a	0.08±0.02 ^a	0.14±0.12ª	0.01±0.01 ^b
OTU26906	Bacteroides	0.01±0.01ª	0.13±0.10 ^b	0.03±0.02 ^c	0.00±0.00 ^d
OTU28645	Bacteroides	0.05±0.03 ^a	0.26±0.19 ^b	0.07±0.06ª	0.00±0.01°

OTU28193	Bacteroides	0.01±0.01ª	0.17±0.13 ^b	0.04±0.04 ^c	0.00±0.00ª
OTU30803	Bacteroides	0.04±0.03 ^a	0.08±0.01 ^b	0.06±0.05 ^a	0.01±0.01°
OTU30477	Bacteroides	0.13±0.08ª	0.01±0.01 ^b	0.09±0.10ª	0.07±0.07ª
OTU16114	Bacteroides	0.03±0.01ª	0.00±0.00 ^b	0.05±0.04ª	0.06±0.05ª
OTU21896	Porphyromonadaceae_unclassified	1.66±0.64 ^a	0.28±0.13 ^b	1.18±0.45 ^c	0.69±0.59 ^{bc}
OTU22302	Bacteroidales_unclassified	0.04±0.01 ^a	0.00±0.00 ^b	0.02±0.02 ^a	0.02±0.02 ^{ab}
OTU11608	Alistipes	0.01±0.02 ^a	0.00±0.00 ^b	0.14±0.09 ^c	0.13±0.09 ^c
OTU19965	Rikenella	0.15±0.12 ^a	0.00±0.00 ^b	0.08±0.06ª	0.01±0.01°
OTU20854	Prevotella	0.05 ± 0.08^{ab}	0.00±0.01ª	0.07 ± 0.06^{b}	0.05±0.04 ^b
OTU15085	Bacteria_unclassified	0.00±0.00 ^a	0.00±0.01ª	0.33±0.14 ^b	3.53±4.63 ^{ab}
OTU30208	Bacteria_unclassified	0.37±0.27ª	0.13±0.08 ^b	0.61±0.32 ^a	2.87±2.97ª
OTU45354	Coriobacteriaceae_unclassified	0.04±0.09 ^{abc}	0.00±0.00 ^a	0.12±0.06 ^b	0.04±0.05 ^c
OTU45737	Coriobacteriaceae_unclassified	0.06±0.05 ^a	0.03±0.01ª	0.12±0.07ª	0.32±0.25 ^b
OTU00019	Escherichia	0.05±0.05 ^a	0.00±0.00 ^b	0.26±0.14 ^c	$0.08 \pm 0.06^{\text{ad}}$
OTU00106	Desulfovibrio	0.12±0.13 ^a	0.00 ± 0.00^{ab}	0.11±0.12ª	0.02±0.01ª
OTU46543	Vampirevibrio	0.10±0.07 ^a	0.00±0.00 ^b	0.04±0.02 ^c	0.01±0.01 ^d
OTU45562	Brevundimonas	0.05±0.06ª	0.06±0.02ª	0.11±0.09ª	0.34±0.20 ^b

OTU00327	Lactobacillus	0.00±0.00ª	0.08±0.05 ^b	0.05±0.05 ^b	0.08±0.11 ^{ab}
OTU00663	Lactobacillus	0.00±0.01ª	0.24±0.28 ^b	0.09±0.10 ^b	0.00 ± 0.01^{ab}
OTU03910	Lactobacillus	0.00±0.00 ^a	0.56±0.25 ^b	0.17±0.15 ^c	0.61±0.19 ^{ad}
OTU00008	Lactobacillus	0.26±0.13 ^a	35.61±10.13 ^b	17.93±8.77°	32.64±9.79 ^{bd}
OTU03877	Lactobacillus	0.01±0.01ª	0.06±0.02 ^b	0.01±0.01ª	0.07±0.03 ^b
OTU00004	Lactobacillus	2.03±2.74 ^a	0.64±0.34 ^a	0.96±0.48ª	5.19±3.16 ^b
OTU00119	Streptococcus	0.06 ± 0.03^{ab}	0.02±0.03 ^c	0.07±0.05 ^{ac}	0.07±0.06 ^b
OTU03231	Erysipelotrichaceae_incertae_sedis	0.02±0.04ª	0.01±0.02 ^b	0.28±0.18ª	0.15±0.16 ^{ab}
OTU14897	Candidatus_Stoquefichus	0.02±0.02 ^a	0.00±0.00 ^b	0.35±0.24 ^c	0.19±0.31 ^{ac}
OTU45613	Candidatus_Stoquefichus	0.00±0.00 ^a	0.00 ± 0.00^{b}	2.85±3.23 ^c	0.00±0.00 ^{ab}
OTU48104	Clostridia_unclassified	0.10±0.06 ^a	0.00±0.00 ^b	0.62±0.58°	0.01±0.01 ^d
OTU44075	Clostridia_unclassified	0.27±0.18 ^a	0.00±0.01 ^b	0.29±0.16ª	0.14±0.19 ^a
OTU43868	Clostridia_unclassified	0.01±0.02 ^a	0.19±0.08 ^b	0.00±0.00 ^c	0.01±0.01ª
OTU43493	Clostridia_unclassified	0.05±0.07ª	0.01±0.01ª	0.19±0.15 ^b	0.42±0.73 ^{ab}
OTU46432	Lachnospiraceae_incertae_sedis	0.01±0.02 ^a	0.00±0.01ª	0.09 ± 0.04^{b}	0.01±0.02 ^a
OTU46518	Clostridium XIVa	0.21±0.20 ^a	0.00±0.01 ^b	0.08±0.05ª	0.03±0.02 ^c
OTU53513	Lachnospiraceae_unclassified	0.03±0.02ª	0.01±0.01 ^b	0.41±0.35°	0.24±0.35 ^{abc}

OTU43517	Lachnospiraceae_unclassified	0.25±0.36 ^{abc}	0.00±0.00 ^a	0.15±0.14 ^b	0.00±0.00 ^c
OTU44159	Lachnospiraceae_unclassified	0.09±0.13 ^{abc}	0.14±0.07 ^a	0.00 ± 0.00^{b}	0.01±0.01°
OTU43587	Lachnospiraceae_unclassified	0.02±0.04 ^{ab}	0.11±0.07ª	0.00 ± 0.00^{b}	0.00 ± 0.00^{b}
OTU52212	Lachnospiraceae_unclassified	0.00±0.00 ^a	0.01±0.02 ^a	0.25 ± 0.28^{b}	0.00±0.00 ^a

Supplementary Figure

Fig. S1. MALDI-TOF/TOF tandem mass spectra of EH-JAP polypeptides.

(A) First-order mass spectra of the enzymatically derived oligopeptides. (B)(C) Sequences of GPSGPR, GPAGPR, respectively, as determined by tandem mass analysis.

Fig. S2. MALDI-TOF/TOF tandem mass spectra of EH-LEU polypeptides. (A) First-order mass spectra of the enzymatically peptides. (B), (C) Sequences of PQGETGA, GFDGPEGPR, respectively, as determined by tender mass analysis.

Fig. S3. Unweighted Unifrac PCoA of the gut microbial communities.

Fig. S4. Original analysis result of redundancy analysis. (A) control *vs* model group, (B) EH-JAP *vs* model group, (C) EH-LEU *vs* model group.