Supplementary Information

for

Hydrogels assembled from ovotransferrin fibrils and xanthan gum as dihydromyricetin delivery vehicles

Zihao Wei ^{a,b}, Yongsheng Chen ^{a,c}, Wahyu Wijaya ^{a,d}, Yujia Cheng ^a, Jie Xiao ^e, Qingrong Huang ^{a,*}

^a Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States

^b College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China

^c Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China

^d Enzyme and Protein Chemistry Group, Department of Bioengineering, Technical University of Denmark, Søltofts Plads, Building 224, 2800 Kgs. Lyngby, Denmark

^e College of Food Science, South China Agricultural University, Guangzhou, 510642, China

Fig. S1. Visual appearance of hydrogel assembled from OVT fibril and XG at pH 2.5: (a) non-inverted vial, (b) inverted vial after 10 min-storage. The pH was adjusted with addition of glucono delta-lactone (GDL).

Fig. S2. Visual appearance of hydrogel assembled from OVT fibril and XG at pH 3.2: (a) non-inverted vial, (b) inverted vial after 10 min-storage. The pH was adjusted with addition of glucono delta-lactone (GDL).

Fig. S3. Visual appearance of DMY-loaded XG hydrogel: (a) non-inverted vial, (b) inverted vial after 24 h-storage.

Fig. S4. Visual appearance of DMY-loaded OVT fibril–XG hydrogel: (a) non-inverted vial,(b) inverted vial after 24 h-storage.