Visible-Light-Induced Metal and Reagent-Free Oxidative Coupling of sp^2 C—H Bond with Organo-Dichalcogenides: Synthesis of 3-Organochalcogenyl Indoles

Vandana Rathore, and Sangit Kumar*

Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal,

Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh, India, 462 066

E-mail: sangitkumar@iiserb.ac.in

Content	Page No.
1. General experimental details	S2
2. General procedure for chalcogenylation of indoles	S3-S19
3. Mechanistic investigation	S20-S24
4. References	S25
5. Characterization data of the synthesized compounds	S26-S183
6. Crystallographic data for 2h (CCDC No. 1887962)	S184-S189

1. General experimental details

All reactions were carried out in oven-dried glassware with magnetic stirring. Indoles used in this study were obtained from commercial sources and used without further purification. Solvents screened in this report were used as purchased from suppliers. All the photo-induced reactions were performed using borosilicate glassware (5/10 mL RBF) under sunlight/CFL bulb (26 W). Substituted aryl disulfides, bis(4-methylphenyl) disulfide, bis(2-benzothiazolyl) disulfide, bis(4-fluorophenyl) disulfide, bis(2-bromophenyl) disulfide, bis(4-chlorophenyl) disulfide and bis(2,5-dichlorophenyl) disulfide, *n*-hexyl disulfide were prepared by the oxidation of respective thiols by using *tert*-butyl hydroperoxide. Diphenyl ditelluride¹, dinaphthyl ditelluride¹ and aryl diselenides: dinaphthyl diselenide,¹ bis-(4-methoxyphenyl) diselenide,¹ bis-(4-chlorophenyl) diselenide,² bis-(4- trifluoromethylphenyl) diselenide,² bis-(2-bromophenyl) diselenide,² bis-(2-chlorophenyl) diselenide,² bis-(4-bromophenyl) diselenide,² bis-(4-methylphenyl) diselenide,¹ bis-(2-methylphenyl) diselenide,¹ bis-(2fluorophenyl) diselenide, 2 bis(3,4,5-trimethoxyphenyl) diselenide, 3 were prepared by following the reported procedure. Diphenyl diselenide used here were obtained from commercial sources. NMR experiments were carried out on Bruker 400/500MHz spectrometer in CDCl₃/DMSO-d₆ solvents and chemical shifts are reported in ppm. High resolution mass spectroscopic (HRMS) analysis is performed on quadrupole-time-of-flight Bruker MicroTOF-Q II mass spectrometer equipped with an ESI (+ve/-ve) or atmospheric pressure chemical ionization (APCI) source. GC-MS analysis is performed on Agilent 7200/Agilent Technologies MS-S975C inert XLEI/CIMSD with triple axis detector. UV-Vis study was performed on Agilent Technologies Cary (5000) series UV-Vis-NIR spectrophotometer. TLC plates (Merck silica gel (⁶⁰F254) plates) used for monitoring the reactions were purchased from Merck.

2. General experimental procedure for chalcogenylation of indoles

Indoles (0.2 mmol, 1.0 equiv.) aryl diselenide/disulfide/ditelluride (0.1 mmol, 0.5 equiv.) were added to a 5 mL round bottom flask with magnetic stir bar in acetone (O₂ purged, 2 mL). The reaction mixture was stirred for disulfide, diselenide and ditelluride substrates are 9-11 h, 6-7 h, and 5-6 h, respectively under sunlight. The progress of the reaction was monitored by TLC. After completion of the reaction, solvent was removed on rotary evaporator under vacuum. The residue was purified by flash column chromatography on silica gel to afford the desired product.

Experimental procedure under CFL light: The above reaction mixture was stirred up to 15-18 h under house hold CFL (26 W) bulb at room temperature. The progress of the reaction was monitored by TLC.

3-(Phenylselanyl)-1H-indole (**2a**).⁴ White solid, yield 42 mg (78%), ¹H NMR (400 MHz, CDCl₃) δ 8.38 (bs, 1H), 7.64 (d, *J* = 7.9 Hz, 1H), 7.48 – 7.40 (m, 2H), 7.25 (dd, *J* = 8.1, 5.8 Hz, 3H), 7.18 (d, *J* = 7.6 Hz, 1H), 7.15 – 7.09 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 136.4, 133.8, 131.2, 130.0, 128.9, 128.7, 125.6, 122.9, 120.9, 120.4, 111.4, 98.2; ⁷⁷Se NMR (95 MHz, CDCl₃) δ 210.5; GC-LRMS *m*/*z* calcd for C₁₄H₁₁NSe [M]⁺ 273.0, found 272.9.

3-(Naphthalen-1-ylselanyl)-1H-indole (2b).⁵ Pale brown liquid, yield 47 mg (74%), ¹H NMR (500 MHz, CDCl₃) δ 8.46 (bs, 1H), 8.37 (d, *J* = 8.3 Hz, 1H), 7.87 (d, *J* = 8.1 Hz, 1H), 7.69 – 7.61 (m, 3H), 7.58 – 7.52 (m, 2H), 7.47 (d, *J* = 8.2 Hz, 1H), 7.33 – 7.29 (m 1H), 7.22 – 7.15 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 136.5, 133.9, 132.6, 132.3, 131.5, 130.0, 128.6, 126.9, 126.24, 126.22, 126.08, 126.05, 125.7, 123.0, 120.9, 120.4, 111.4, 97.4; ⁷⁷Se NMR (95 MHz, CDCl₃) δ 174.6; GC-LRMS *m*/*z* calcd for C₁₈H₁₃NSe [M]⁺ 323.0, found 322.9.

1-Methyl-3-(phenylselanyl)-1H-indole (2c).⁴ White solid, yield 43 mg (76%), ¹H NMR (500 MHz, CDCl₃) δ 7.67 (dt, *J* = 7.9, 1.0 Hz, 1H), 7.42 (dt, *J* = 8.2, 1.0 Hz, 1H), 7.37 (s, 1H), 7.35 – 7.32 (m, 1H), 7.29 – 7.26 (m, 2H), 7.23 – 7.20 (m, 1H), 7.18 – 7.10 (m, 3H), 3.88 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 137.5, 135.6, 134.2, 130.7, 128.9, 128.6, 125.5, 122.4, 120.5, 120.4, 109.5, 96.0, 33.1; ⁷⁷Se NMR (95 MHz, CDCl₃) δ 207.6 ppm; GC-LRMS *m/z* calcd for

2-Methyl-3-(phenylselanyl)-1H-indole (2d).⁴ White solid, yield 44 mg (77%), ¹H NMR (500 MHz, CDCl₃) δ 8.25 (bs, 1H), 7.63 (dt, *J* = 7.7, 1.0 Hz, 1H), 7.36 (dt, *J* = 8.0, 1.0 Hz, 1H), 7.27 – 7.22 (m, 3H), 7.21 – 7.13 (m, 4H), 2.57 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 140.9, 135.8, 134.0, 131.3, 129.0, 128.4, 125.4, 122.1, 120.7, 119.8, 110.5, 96.2, 13.2; ⁷⁷Se NMR (76 MHz, CDCl₃) δ 184.6 ppm; GC-LRMS *m/z* calcd for C₁₅H₁₃NSe [M]⁺ 287.0, found 286.9.

3-((4-Methoxyphenyl)selanyl)-2-methyl-1H-indole (2e). Brown liquid, yield 49 mg (78%), ¹H NMR (500 MHz, CDCl₃) δ 8.21 (bs, 1H), 7.66 – 7.61 (m, 1H), 7.33 (dt, *J* = 8.0, 0.9 Hz, 1H), 7.24 – 7.16 (m, 4H), 6.76 – 6.72 (m, 2H), 3.75 (s, 3H), 2.58 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 158.2, 140.4, 135.7, 131.2, 130.7, 123.7, 122.0, 120.6, 119.8, 114.8, 110.5, 97.4, 55.3, 13.2; ⁷⁷Se NMR (95 MHz, CDCl₃) δ 174.0 ppm; HRMS (ESI) *m/z* calcd for C₁₆H₁₅NOSe [M-H]⁺ 316.0236, found 316.0256.

3-((4-Chlorophenyl)selanyl)-2-methyl-1H-indole (2f). Light brown solid, yield 51 mg (79%), ¹H NMR (500 MHz, CDCl₃) δ 8.33 (bs, 1H), 7.56 (d, *J* = 7.8 Hz, 1H), 7.37 (d, *J* = 8.0 Hz, 1H), 7.26 – 7.21 (m, 1H), 7.20 – 7.16 (m, 1H), 7.11 (s, 4H), 2.57 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 140.9, 135.8, 132.2, 131.3, 131.0, 129.6, 129.0, 122.3, 120.8, 119.6, 110.6, 96.0, 13.2; ⁷⁷Se NMR (95 MHz, CDCl₃) δ 188.0 ppm; HRMS (ESI) *m/z* calcd for C₁₅H₁₂ClNSe S5

[M-H]⁺ 319.9738, found 319.9765.

5-Methyl-3-((**4**-(**trifluoromethyl**)**phenyl**)**selanyl**)-**1H-indole** (**2g**). Cream solid, yield 57 mg (80%), ¹H NMR (500 MHz, CDCl₃) δ 8.43 (bs, 1H), 7.49 (d, *J* = 2.6 Hz, 1H), 7.45 – 7.42 (m, 1H), 7.39 (d, *J* = 8.2 Hz, 3H), 7.31 (d, *J* = 8.2 Hz, 2H), 7.17 (dd, *J* = 8.4, 1.6 Hz, 1H), 2.48 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 139.8 (q, *J* = 1.3 Hz), 134.8, 131.7, 130.7, 129.9, 128.0, 127.6 (q, *J* = 32.6 Hz), 125.6 (q, *J* = 3.8 Hz), 124.9, 124.3 (q, *J* = 271.9 Hz), 119.6, 111.2, 96.3, 21.5; ⁷⁷Se NMR (95 MHz, CDCl₃) δ 222.8; HRMS (ESI) *m*/*z* calcd for C₁₆H₁₂F₃NSe [M-H]⁺ 354.0004, found 354.0024.

3-((2-Bromophenyl)selanyl)-5-methyl-1H-indole (2h). Buff solid, yield 62 mg (85%), ¹H NMR (500 MHz, CDCl₃) δ 8.46 (bs, 1H), 7.50 (dd, *J* = 7.5, 1.8 Hz, 1H), 7.47 (d, *J* = 2.6 Hz, 1H), 7.45 (dd, *J* = 1.8, 0.9 Hz, 1H), 7.39 (d, *J* = 8.3 Hz, 1H), 7.16 (dd, *J* = 8.2, 1.6 Hz, 1H), 7.01 – 6.95 (m, 2H), 6.76 – 6.72 (m, 1H), 2.47 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 137.1, 134.9, 132.4, 132.2, 130.7, 130.1, 128.8, 127.7, 126.5, 124.9, 121.7, 119.8, 111.2, 97.3, 21.5; ⁷⁷Se NMR (95 MHz, CDCl₃) δ 235.3; HRMS (APCI) *m*/*z* calcd for C₁₅H₁₂BrNSe [M+H]⁺ 365.9388, found 365.9360.

5-Methoxy-3-(phenylselanyl)-1H-indole (2i).⁴ Brown solid, yield 46 mg (77%), ¹H NMR

(400 MHz, CDCl₃) δ 8.43 (bs, 1H), 7.47 – 7.43 (m, 1H), 7.34 (d, *J* = 8.8 Hz, 1H), 7.26 (d, *J* = 1.8 Hz, 2H), 7.20 – 7.10 (m, 4H), 6.95 (dt, *J* = 8.8, 1.8 Hz, 1H), 3.84 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 155.1, 133.9, 131.9, 131.3, 130.8, 129.0, 128.5, 125.6, 113.5, 112.3, 101.6, 97.6, 55.8; ⁷⁷Se NMR (95 MHz, CDCl₃) δ 208.7; HRMS (ESI) *m*/*z* calcd for C₁₅H₁₃NOSe [M-H]⁺ 302.0079, found 302.0117.

5-Methoxy-3-((4-methoxyphenyl)selanyl)-1H-indole (2j).⁴ Colorless liquid, yield 50 mg (75%), ¹H NMR (500 MHz, CDCl₃) δ 8.34 (bs, 1H), 7.44 (d, *J* = 2.5 Hz, 1H), 7.32 (d, *J* = 8.8 Hz, 1H), 7.29 – 7.26 (m, 2H), 7.12 (d, *J* = 2.5 Hz, 1H), 6.92 (dd, *J* = 8.8, 2.5 Hz, 1H), 6.78 – 6.73 (m, 2H), 3.85 (s, 3H), 3.76 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 158.3, 155.0, 131.30, 131.27, 131.0, 130.7, 123.5, 114.8, 113.3, 112.1, 101.6, 99.0, 55.8, 55.3; ⁷⁷Se NMR (95 MHz, CDCl₃) δ 199.5; HRMS (ESI) *m*/*z* calcd for C₁₆H₁₅NO₂Se [M-H]⁺ 332.0185, found 332.0212.

5-Methoxy-3-((4-(trifluoromethyl)phenyl)selanyl)-1H-indole (**2k**). Brown solid, yield 55 mg (74%), ¹H NMR (500 MHz, CDCl₃) δ 8.51 (bs, 1H), 7.50 (d, *J* = 2.6 Hz, 1H), 7.41 – 7.37 (m, 3H), 7.31 (dd, *J* = 8.7, 1.0 Hz, 2H), 7.05 (d, *J* = 2.5 Hz, 1H), 6.98 (dd, *J* = 8.9, 2.5 Hz, 1H), 3.84 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 155.3, 139.7 (q, *J* = 1.3 Hz), 132.2, 131.4, 130.5, 128.0, 127.6 (q, *J* = 32.5 Hz), 125.6 (q, *J* = 3.7 Hz), 124.4 (q, *J* = 273.2 Hz), 113.7, 112.4, 101.3, 96.5, 55.8; ⁷⁷Se NMR (95 MHz, CDCl₃) δ 223.1; HRMS (ESI) *m*/*z* calcd for C₁₆H₁₂F₃NOSe [M-H]⁺ 369.9953, found 369.9966.

3-((2-Chlorophenyl)selanyl)-5-methoxy-1H-indole (2l). Cream solid, yield 55 mg (82%), ¹H NMR (500 MHz, CDCl₃) δ 8.53 (bs, 1H), 7.48 (d, *J* = 2.6 Hz, 1H), 7.38 (d, *J* = 8.7 Hz, 1H), 7.34 (dd, *J* = 7.9, 1.4 Hz 1H), 7.09–7.05 (m, 2H), 6.98 (dd, *J* = 8.8, 2.5 Hz, 1H), 6.95–6.91 (m, 1H), 6.76 (dd, *J* = 7.9, 1.6 Hz, 1H), 3.84 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 155.3, 134.6, 132.7, 132.0, 131.5, 130.7, 129.2, 128.7, 127.2, 126.4, 113.8, 112.5, 101.4, 96.3, 56.0; ⁷⁷Se NMR (95 MHz, CDCl₃) δ 212.5; HRMS (ESI) *m*/*z* calcd for C₁₅H₁₂ClNOSe [M-H]⁺ 335.9687, found 335.9693.

2-Phenyl-3-(phenylselanyl)-1H-indole (2m).⁵ Yellow liquid, yield 55 mg (79%), ¹H NMR (500 MHz, CDCl₃) δ 8.59 (bs, 1H), 7.79 – 7.74 (m, 2H), 7.71 (d, *J* = 7.9 Hz, 1H), 7.50 – 7.45 (m, 3H), 7.44 – 7.40 (m, 1H), 7.33 – 7.29 (m, 1H), 7.27 – 7.20 (m, 3H), 7.19 – 7.11 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 142.1, 136.2, 134.1, 132.1, 132.0, 129.1, 128.6, 128.5, 128.3, 125.4, 123.3, 121.1, 120.9, 111.0, 95.9; ⁷⁷Se NMR (95 MHz, CDCl₃) δ 207.6; HRMS (ESI) *m/z* calcd for C₂₀H₁₅NSe [M+H]⁺ 349.0365, found 349.0364.

3-Methyl-2-(phenylselanyl)-1H-indole (2n).⁶ Dark brown solid, yield 14 mg (25%), ¹H NMR (400 MHz, CDCl₃) δ 7.98 (bs, 1H), 7.64 (d, *J* = 7.9 Hz, 1H), 7.32 – 7.16 (m, 8H), 2.46 (s, 3H);
¹³C NMR (100 MHz, CDCl₃) δ 137.6, 132.2, 129.4, 129.3, 128.4, 126.4, 123.2, 119.9, 119.6, 119.4, 118.2, 110.8, 10.4; ⁷⁷Se NMR (75 MHz, CDCl₃) δ 257.8; GC-LRMS *m/z* calcd for S8

3-((**4**-**Bromophenyl**)selanyl)-**5**-fluoro-1**H**-indole (2o). White solid, yield 55 mg (75%), ¹H NMR (500 MHz, CDCl₃) δ 8.58 (bs, 1H), 7.54 (d, *J* = 2.4 Hz, 1H), 7.39 (dd, *J* = 8.8, 4.2 Hz, 1H), 7.29 – 7.26 (m, 3H), 7.13 – 7.08 (m, 2H), 7.04 (td, *J* = 8.9, 2.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 158.8 (d, *J* = 236.9 Hz), 132.97, 132.87, 132.4, 132.0, 130.3, 129.5, 119.7, 112.3 (d, *J* = 9.5 Hz), 111.7 (d, *J* = 26.6 Hz), 105.3 (d, *J* = 24.2 Hz), 97.9 (d, *J* = 4.6 Hz); ⁷⁷Se NMR (95 MHz, CDCl₃) δ 215.7; HRMS (ESI) *m*/*z* calcd for C₁₄H₉BrFNSe [M-H]⁺ 367.8981, found 367.8989.

3-((4-Bromophenyl)selanyl)-5-chloro-1H-indole (2p). Olive green solid, yield 62 mg (81%), ¹H NMR (500 MHz, CDCl₃) δ 8.53 (bs, 1H), 7.62 – 7.60 (m, 1H), 7.51 (d, *J* = 2.5 Hz, 1H), 7.39 – 7.37 (m, 1H), 7.29 – 7.27 (m, 2H), 7.25 (dd, *J* = 8.6, 2.0 Hz, 1H), 7.11 – 7.08 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 134.8, 132.6, 132.4, 132.0, 131.0, 130.3, 127.0, 123.6, 119.75, 119.71, 112.6, 97.6; ⁷⁷Se NMR (95 MHz, CDCl₃) δ 214.4; HRMS (APCI) *m/z* calcd for C₁₄H₉BrClNSe [M+H]⁺ 385.8840, found 385.8869.

6-Chloro-3-(p-tolylselanyl)-1H-indole (2q). Colorless crystalline solid, yield 48 mg (75%), ¹H NMR (500 MHz, CDCl₃) δ 8.42 (bs, 1H), 7.56 (d, *J* = 8.5 Hz, 1H), 7.45 (dd, *J* = 14.6, 2.1 Hz, 2H), 7.20 – 7.14 (m, 3H), 7.00 (d, *J* = 7.8 Hz, 2H), 2.28 (s, 3H); ¹³C NMR (125 MHz, S9 CDCl₃) δ 136.7, 135.8, 131.5, 129.9, 129.3, 129.2, 128.9, 128.6, 121.6, 121.4, 111.3, 99.1, 20.9; ⁷⁷Se NMR (95 MHz, CDCl₃) δ 207.0; HRMS (APCI) *m/z* calcd for C₁₅H₁₂ClNSe [M+H]⁺ 321.9894, found 321.9917.

6-Chloro-3-((4-(trifluoromethyl)phenyl)selanyl)-1H-indole (2r). Buff solid, yield 54 mg (72%), ¹H NMR (500 MHz, CDCl₃) δ 8.61 (bs, 1H), 7.54–7.49 (m, 3H), 7.39 (d, J = 8.3 Hz, 2H), 7.28 (d, J = 8.9 Hz, 2H), 7.19 (dd, J = 8.4, 1.8 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 139.1 (q, J = 1.4 Hz), 136.8, 132.2, 129.3, 128.3, 128.2, 127.9 (q, J = 32.4 Hz), 125.7 (q, J = 3.7 Hz), 124.2 (q, J = 271.9 Hz), 122.0, 121.1, 111.5, 97.3; ⁷⁷Se NMR (95 MHz, CDCl₃) δ 225.8; HRMS (APCI) m/z calcd for C₁₅H₉ClF₃NSe [M+H]⁺ 375.9611, found 375.9619.

3-((2-Bromophenyl)selanyl)-6-chloro-1H-indole (2s). Light brown solid, yield 60 mg (78%), ¹H NMR (500 MHz, CDCl₃) δ 8.59 (s, 1H), 7.55 – 7.48 (m, 4H), 7.18 (dd, *J* = 8.5, 1.8 Hz, 1H), 7.01 – 6.95 (m, 2H), 6.67 (dd, *J* = 7.4, 2.1 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 136.9, 136.5, 132.6, 132.5, 129.3, 128.7, 128.5, 127.7, 126.7, 121.9, 121.8, 121.3, 111.5, 98.4; ⁷⁷Se NMR (95 MHz, CDCl₃) δ 237.1; HRMS (APCI) *m*/*z* calcd for C₁₄H₉BrClNSe [M+H]⁺ 385.8840, found 385.8871.

5-Bromo-3-(o-tolylselanyl)-1H-indole (2t).⁷ Buff solid, yield 54 mg (74%), ¹H NMR (500

MHz, CDCl₃) δ 8.55 (bs, 1H), 7.78 (d, *J* = 1.8 Hz, 1H), 7.47 (d, *J* = 2.6 Hz, 1H), 7.38 (dd, *J* = 8.6, 1.9 Hz, 1H), 7.34 (d, *J* = 8.6 Hz, 1H), 7.17 (d, *J* = 7.2 Hz, 1H), 7.07 (td, *J* = 7.4, 1.3 Hz, 1H), 6.91 (td, *J* = 7.6, 1.4 Hz, 1H), 6.82 (d, *J* = 6.5 Hz, 1H), 2.51 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 136.2, 135.2, 134.1, 132.7, 132.0, 130.0, 127.8, 126.6, 126.0, 125.6, 123.0, 114.4, 112.9, 96.9, 21.3; ⁷⁷Se NMR (95 MHz, CDCl₃) δ 179.8; HRMS (ESI) *m/z* calcd for C₁₅H₁₂BrNSe [M-H]⁺ 363.9232, found 363.9262.

5-Bromo-3-((2-fluorophenyl)selanyl)-1H-indole (2u). Colorless crystalline solid, yield 54 mg (73%), ¹H NMR (500 MHz, CDCl₃) δ 8.57 (s, 1H), 7.80 (d, *J* = 1.7 Hz, 1H), 7.52 (d, *J* = 2.5 Hz, 1H), 7.41 – 7.33 (m, 2H), 7.16 – 7.11 (m, 1H), 7.04 (td, *J* = 8.6, 8.1, 1.2 Hz, 1H), 6.89 – 6.82 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 159.9, 135.1, 133.1, 131.9, 130.2, 127.5, 126.1, 124.8, 122.9, 120.2, 115.1, 114.6, 113.0, 95.5; ⁷⁷Se NMR (95 MHz, CDCl₃) δ 159.9; HRMS (APCI) *m/z* calcd for C₁₄H₉BrFNSe [M+H]⁺ 369.9138, found 369.9168.

3-((**2**-Chlorophenyl)selanyl)-**5**-iodo-1H-indole (2v). Colorless crystalline solid, yield 72 mg (83%), ¹H NMR (500 MHz, CDCl₃) δ 8.58 (bs, 1H), 8.00 – 7.97 (m, 1H), 7.57 (dd, *J* = 8.6, 1.7 Hz, 1H), 7.47 (d, *J* = 2.6 Hz, 1H), 7.34 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.27 (d, *J* = 8.5 Hz, 1H), 7.08 (td, *J* = 7.6, 1.6 Hz, 1H), 6.96 – 6.92 (m, 1H), 6.69 (dd, *J* = 8.0, 1.6 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 135.7, 134.1, 132.8, 132.5, 132.0, 131.7, 129.3, 129.1, 128.6, 127.3, 126.6, 113.5, 96.2, 85.0; ⁷⁷Se NMR (95 MHz, CDCl₃) δ 212.8; HRMS (APCI) *m*/*z* calcd for C₁₄H₉ClINSe [M+H]⁺ 433.8704, found 433.8708.

3-((2-Bromophenyl)selanyl)-5-iodo-1H-indole (2w). Colorless crystalline solid, yield 81 mg (85%), ¹H NMR (500 MHz, CDCl₃) δ 8.58 (bs, 1H), 8.00 – 7.97 (m, 1H), 7.57 (dd, *J* = 8.5, 1.7 Hz, 1H), 7.52 – 7.45 (m, 2H), 7.27 (d, *J* = 8.5 Hz, 1H), 7.02 – 6.96 (m, 2H), 6.69 – 6.64 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 136.5, 135.7, 132.8, 132.6, 132.4, 131.7, 129.1, 128.7, 127.8, 126.8, 121.8, 113.5, 97.3, 85.0; ⁷⁷Se NMR (95 MHz, CDCl₃) δ 235.6; HRMS (APCI) *m/z* calcd for C₁₄H₉BrINSe [M+H]⁺ 477.8198, found 477.8192.

N,*N*-dimethyl-4-(phenylselanyl)aniline (2x). yellow liquid, yield 36 mg (65%), ¹H NMR (500 MHz, CDCl₃) δ 7.56 – 7.52 (m, 2H), 7.35 – 7.31 (m, 2H), 7.25 – 7.21 (m, 2H), 7.20 – 7.16 (m, 1H), 6.73 – 6.70 (m, 2H), 3.02 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 150.5, 137.1, 134.6, 129.8, 129.0, 125.8, 113.7, 113.2, 40.3; ⁷⁷Se NMR (75 MHz, CDCl₃) δ 391.2; GC-LRMS *m*/*z* calcd for C₁₄H₁₅NSe [M]⁺ 277.0, found 277.1.

5-Methoxy-1,2-dimethyl-3-((3,4,5-trimethoxyphenyl)selanyl)-1H-indole (II). Light yellow solid, yield 26 mg (25%), ¹H NMR (500 MHz, CDCl₃) δ 7.23 (d, *J* = 8.8 Hz, 1H), 7.10 (d, *J* = 2.4 Hz, 1H), 6.89 (dd, *J* = 8.8, 2.5 Hz, 1H), 6.46 (s, 2H), 3.85 (s, 3H), 3.79 (s, 3H), 3.77 (s, 3H), 3.69 (s, 6H), 2.58 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 154.9, 153.5, 142.8, 136.2, 132.4, 131.2, 128.7, 111.7, 109.8, 105.7, 101.5, 95.2, 60.8, 56.1, 55.9, 30.6, 12.2; HRMS (ESI) S12

m/z calcd for C₂₀H₂₃NO₄Se [M+H]⁺ 422.0866, found 422.0854.

2-Methyl-3-(phenyltellanyl)-1H-indole (3a). Brown liquid, yield 41 mg (62%), ¹H NMR (500 MHz, CDCl₃) δ 8.40 (s, 1H), 7.60 (d, *J* = 7.7 Hz, 1H), 7.40 – 7.34 (m, 3H), 7.24 – 7.18 (m, 2H), 7.15 – 7.12 (m, 1H), 7.11 – 7.07 (m, 2H), 2.67 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 143.3, 137.6, 136.6, 134.0, 129.1, 126.4, 122.2, 121.8, 120.7, 119.6, 110.3, 100.4, 15.5; HRMS (APCI) *m/z* calcd for C₁₅H₁₃NTe [M]⁺ 337.0105, found 337.0101.

2-Methyl-3-(naphthalen-1-yltellanyl)-1H-indole (3b). Dark brown liquid, yield 46 mg (60%), ¹H NMR (500 MHz, CDCl₃) δ 8.73 (s, 1H), 8.01 (d, *J* = 8.3 Hz, 1H), 7.81 (d, *J* = 8.1 Hz, 1H), 7.65 (d, *J* = 8.1 Hz, 1H), 7.57 (t, *J* = 7.5 Hz, 2H), 7.51 (t, *J* = 7.7 Hz, 1H), 7.37 (d, *J* = 8.0 Hz, 1H), 7.29 (s, 1H), 7.22 (t, *J* = 7.5 Hz, 1H), 7.15 (t, *J* = 7.5 Hz, 1H), 7.08 (t, *J* = 7.6 Hz, 1H), 2.67 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 143.8, 136.8, 135.2, 133.85, 133.81, 132.4, 129.1, 128.7, 127.0, 126.4, 126.3, 125.9, 122.2, 121.7, 120.7, 119.6, 118.6, 110.4, 15.5; HRMS (APCI) *m/z* calcd for C₁₉H₁₅NTe [M]⁺ 387.0262, found 387.0291.

5-Methoxy-2-methyl-3-(phenyltellanyl)-1H-indole (3c). Mustard liquid, yield 42 mg (58%), ¹H NMR (500 MHz, CDCl₃) δ 8.31 (s, 1H), 7.40 – 7.35 (m, 2H), 7.24 (d, *J* = 8.7 Hz, 1H), 7.17 - 7.13 (m, 1H), 7.12 - 7.06 (m, 3H), 6.86 (dd, J = 8.7, 2.5 Hz, 1H), 3.86 (s, 3H), 2.64 (s, 3H);
¹³C NMR (125 MHz, CDCl₃) δ 155.0, 144.1, 137.6, 134.7, 133.9, 129.2, 126.4, 116.8, 112.1,
111.3, 103.7, 81.7, 55.9, 15.5; HRMS (ESI) *m/z* calcd for C₁₆H₁₅NOTe [M-H]⁺ 364.0115,
found 364.0167.

5-Methoxy-2-methyl-3-(naphthalen-1-yltellanyl)-1H-indole (3d). Dark brown liquid, yield 46 mg (55%),¹H NMR (500 MHz, CDCl₃) δ 8.37 (s, 1H), 8.02 (d, *J* = 8.3 Hz, 1H), 7.82 (d, *J* = 8.1 Hz, 1H), 7.67 (d, *J* = 8.1 Hz, 1H), 7.59 (ddd, *J* = 8.3, 6.9, 1.3 Hz, 1H), 7.53 (ddd, *J* = 8.2, 6.7, 1.2 Hz, 1H), 7.30 (dd, *J* = 7.3, 1.1 Hz, 1H), 7.26 (d, *J* = 8.7 Hz, 1H), 7.12 – 7.09 (m, 1H), 7.06 (d, *J* = 2.4 Hz, 1H), 6.87 (dd, *J* = 8.7, 2.5 Hz, 1H), 3.82 (s, 3H), 2.65 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 155.1, 144.4, 135.2, 134.7, 133.9, 132.2, 131.6, 129.0, 128.7, 127.0, 126.5, 126.3, 125.9, 118.6, 112.3, 111.2, 103.6, 80.8, 55.8, 15.6; HRMS (ESI) *m/z* calcd for C₂₀H₁₇NOTe [M]⁺ 417.0368, found 417.0384.

2-Methyl-3-(p-tolylthio)-1H-indole (4a).⁸ Brown solid, yield 35 mg (69%), ¹H NMR (500 MHz, CDCl₃) δ 8.22 (s, 1H), 7.60 (d, *J* = 7.8 Hz, 1H), 7.36 (d, *J* = 8.0 Hz, 1H), 7.23 (td, *J* = 7.5, 1.3 Hz, 1H), 7.17 (td, *J* = 7.6, 7.1, 1.1 Hz, 1H), 7.01 (s, 4H), 2.54 (s, 3H), 2.29 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 140.9, 135.7, 135.4, 134.3, 130.3, 129.5, 125.8, 122.1, 120.6, 119.0, 110.6, 99.9, 20.9, 12.2; GC-LRMS *m/z* calcd for C₁₆H₁₅NS [M]⁺ 253.1, found 253.1.

2-((2-Methyl-1H-indol-3-yl)thio)benzo[d]thiazole (**4b**).⁹ Pale yellow solid, yield 43 mg (72%), ¹H NMR (500 MHz, DMSO-*d*₆) δ 12.01 (bs, 1H), 7.81 (d, *J* = 8.2 Hz, 1H), 7.74 (d, *J* = 8.0 Hz, 1H), 7.50 (dd, *J* = 7.9, 2.4 Hz, 2H), 7.37 (t, *J* = 7.7 Hz, 1H), 7.20 (dt, *J* = 17.7, 7.7 Hz, 2H), 7.10 (t, *J* = 7.5 Hz, 1H), 2.55 (s, 3H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 174.1, 154.9, 144.0, 136.2, 135.4, 129.4, 126.5, 124.3, 122.4, 121.9, 121.5, 121.1, 117.8, 112.1, 95.5, 12.1; GC-LRMS *m/z* calcd for C₁₆H₁₂N₂S₂ [M]⁺ 296.0, found 296.0.

3-((4-Fluorophenyl)thio)-5-methoxy-1H-indole (4c).¹⁰ Brown liquid, yield 34 mg (62%), ¹H NMR (500 MHz, CDCl₃) δ 8.41 (s, 1H), 7.47 (d, *J* = 2.7 Hz, 1H), 7.35 (d, *J* = 8.8 Hz, 1H), 7.11 (dd, *J* = 8.6, 5.1 Hz, 2H), 7.06 (d, *J* = 2.4 Hz, 1H), 6.96 – 6.89 (m, 3H), 3.83 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 160.9 (d, *J* = 244.0 Hz), 155.2, 134.1 (d, *J* = 3.0 Hz), 131.4, 131.2, 129.7, 127.6 (d, *J* = 7.7 Hz), 115.7 (d, *J* = 21.9 Hz), 113.6, 112.5, 102.7, 100.7, 55.8; GC-LRMS *m/z* calcd for C₁₅H₁₂FNOS [M]⁺ 273.1, found 273.1.

3-((2-Bromophenyl)thio)-5-chloro-1H-indole (4d). Olive solid, yield 47 mg (70%), ¹H NMR (500 MHz, CDCl₃) δ 8.62 (s, 1H), 7.60 (d, *J* = 1.9 Hz, 1H), 7.56 (d, *J* = 2.6 Hz, 1H), 7.54 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.42 (d, *J* = 8.6 Hz, 1H), 7.27 (dd, *J* = 8.7, 2.0 Hz, 1H), 7.03 (td, *J* = 7.7, 1.4 Hz, 1H), 6.96 (td, *J* = 7.6, 1.6 Hz, 1H), 6.62 (dd, *J* = 7.9, 1.5 Hz, 1H); ¹³C NMR (125 MHz,

CDCl₃) δ 140.0, 134.9, 132.7, 132.6, 130.2, 127.6, 127.2, 126.2, 125.9, 123.8, 119.7, 119.1, 112.8, 101.9; HRMS (APCI) *m*/*z* calcd for C₁₄H₉BrClNS [M+H]⁺ 339.9379, found 339.9389.

5-Bromo-3-((4-chlorophenyl)thio)-1H-indole (4e).¹¹ Olive green solid, yield 44 mg (65%), ¹H NMR (500 MHz, CDCl₃) δ 8.52 (bs, 1H), 7.74 (d, *J* = 1.7 Hz, 1H), 7.51 (d, *J* = 2.7 Hz, 1H), 7.39 (dd, *J* = 8.6, 1.9 Hz, 1H), 7.34 (d, *J* = 8.6 Hz, 1H), 7.18 – 7.15 (m, 2H), 7.04 – 7.01 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 137.3, 135.1, 131.9, 130.9, 130.7, 128.9, 127.1, 126.3, 122.1, 114.6, 113.2, 102.4; GC-LRMS *m*/*z* calcd for C₁₄H₉BrClNS [M]⁺ 336.9, found 338.9.

3-((2,5-Dichlorophenyl)thio)-5-iodo-1H-indole (4f). Buff solid, yield 65 mg (78%), ¹H NMR (500 MHz, CDCl₃) δ 8.61 (bs, 1H), 7.93 (s, 1H), 7.58 (dd, *J* = 8.6, 1.7 Hz, 1H), 7.50 (d, *J* = 2.7 Hz, 1H), 7.38 (d, *J* = 2.2 Hz, 1H), 7.28 (d, *J* = 8.8 Hz, 1H),6.96 (dd, *J* = 8.6, 2.2 Hz, 1H), 6.54 (d, *J* = 8.6 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 136.9, 135.7, 132.1, 132.0, 131.2, 130.7, 130.6, 129.1, 128.2, 127.3, 127.0, 113.7, 100.3, 85.2; HRMS (APCI) *m/z* calcd for C₁₄H₈Cl₂INS [M]⁺ 418.8794, found 418.8823.

3-((2-Bromophenyl)thio)-5-methoxy-2-methyl-1H-indole (4g). Light brown solid, yield 47 mg (67%), ¹H NMR (500 MHz, CDCl₃) δ 8.28 (s, 1H), 7.53 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.27 (d, *J* = 8.7 Hz, 1H), 7.04 – 6.99 (m, 2H), 6.95 – 6.92 (m, 1H), 6.88 (dd, *J* = 8.7, 2.5 Hz, 1H), 6.56

(dd, J = 7.9, 1.6 Hz, 1H), 3.82 (s, 3H), 2.50 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 155.2, 142.3, 140.3, 132.6, 130.9, 130.3, 127.5, 125.9, 125.4, 119.6, 112.5, 111.5, 100.6, 98.1, 55.8, 12.3; HRMS (ESI) *m*/*z* calcd for C₁₆H₁₄BrNOS [M-H]⁺ 347.9875, found 347.9896.

3. General experimental procedure for thiocyanation of indoles

Indoles (0.2 mmol, 1.0 equiv.) ammonium thiocyanate (0.4 mmol, 2 equiv.) were added to a 5 mL round bottom flask with magnetic stir bar in acetone (O_2 purged, 2 mL). The reaction mixture was stirred for 8 h under sunlight. After completion of the reaction, solvent was removed on rotary evaporator under vacuum. The residue was purified by flash column chromatography on silica gel to afford the desired product.

3-Thiocyanato-1H-indole (**5a**).¹² White solid, yield 26 mg (74%), ¹H NMR (500 MHz, CDCl₃) δ 8.83 (s, 1H), 7.85 – 7.81 (m, 1H), 7.47 (d, *J* = 2.8 Hz, 1H), 7.45 – 7.42 (m, 1H), 7.36 – 7.32 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 136.1, 131.1, 127.7, 123.8, 121.9, 118.7, 112.23, 112.21, 91.9; GC-LRMS *m/z* calcd for C₉H₆N₂S [M]⁺ 174.0, found 174.1.

1-Methyl-3-thiocyanato-1H-indole (5b).¹² White solid, yield 25 mg (67%), ¹H NMR (500 MHz, CDCl₃) δ 7.87 – 7.80 (m, 1H), 7.43 – 7.38 (m, 3H), 7.38 – 7.33 (m, 1H), 3.82 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 137.2, 135.1, 128.5, 123.4, 121.6, 118.9, 111.9, 110.2, 89.9, 33.4; GC-LRMS *m/z* calcd for C₁₀H₈N₂S [M]⁺ 188.0, found 188.1.

2-Methyl-3-thiocyanato-1H-indole (**5c**).¹² Colorless crystalline solid, yield 27 mg (71%), ¹H NMR (500 MHz, CDCl₃) δ 8.59 (s, 1H), 7.73 – 7.70 (m, 1H), 7.34 – 7.30 (m, 1H), 7.29 – 7.24 (m, 2H), 2.51 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 142.1, 135.1, 128.7, 123.0, 121.6, 118.1, 112.2, 111.3, 88.8, 12.0; GC-LRMS *m/z* calcd for C₁₀H₈N₂S [M]⁺ 188.0, found 188.1.

2-Phenyl-3-thiocyanato-1H-indole (5d).¹² Pale orange solid, yield 32 mg (65%), ¹H NMR (500 MHz, CDCl₃) δ 8.75 (s, 1H), 7.91 – 7.82 (m, 1H), 7.81 – 7.70 (m, 2H), 7.62 – 7.55 (m, 2H), 7.55 – 7.51 (m, 1H), 7.48 – 7.45 (m, 1H), 7.39 – 7.34 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 143.1, 135.4, 130.0, 129.7, 129.6, 129.1, 128.6, 124.1, 122.1, 119.1, 111.9, 111.6. 89.2; HRMS (ESI) *m/z* calcd for C₁₅H₁₀N₂S [M+Na]⁺ 273.0457, found 273.0456.

5-Methoxy-3-thiocyanato-1H-indole (5e).¹² Beige solid, yield 28 mg (69%), ¹H NMR (500 MHz, CDCl₃) δ 8.74 (s, 1H), 7.46 (d, *J* = 2.9 Hz, 1H), 7.32 (d, *J* = 8.9 Hz, 1H), 7.21 (d, *J* = 2.4 Hz, 1H), 6.97 (dd, *J* = 8.9, 2.4 Hz, 1H), 3.94 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 155.7, 131.5, 130.9, 128.5, 114.5, 113.1, 112.1, 99.8, 91.4, 55.9; HRMS (ESI) *m/z* calcd for C₁₀H₈N₂OS [M+Na]⁺ 227.0250, found 227.0239.

5-Methoxy-2-methyl-3-thiocyanato-1H-indole (5f). Beige solid, yield 27 mg (63%), ¹H NMR (500 MHz, CDCl₃) δ 8.61 (s, 1H), 7.19 (dd, J = 8.8, 1.0 Hz, 1H), 7.15 – 7.12 (m, 1H),

6.89 – 6.86 (m, 1H), 3.93 (d, *J* = 1.4 Hz, 3H), 2.51 (d, *J* = 1.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 155.5, 142.5, 129.9, 129.6, 112.9, 112.2, 112.1, 99.9, 88.3, 55.9 (d, *J* = 1.5 Hz), 12.1 (d, *J* = 1.0 Hz).

5-Chloro-3-thiocyanato-1H-indole (5g).¹² White solid, yield 25 mg (60%), ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.98 (s, 1H), 7.64 (s, 1H), 7.55 (d, *J* = 8.7 Hz, 1H), 7.27 (d, *J* = 8.6 Hz, 1H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 135.1, 134.9, 129.0, 126.4, 123.6, 117.4, 115.0, 112.8, 90.0; HRMS (ESI) *m/z* calcd for C₉H₅ClN₂S [M+H]⁺ 208.9935, found 208.9933.

5-Bromo-3-thiocyanato-1H-indole (5h).¹² White solid, yield 28 mg (56%), ¹H NMR (500 MHz, DMSO-*d*₆) δ 12.20 (s, 1H), 8.06 (d, *J* = 2.1 Hz, 1H), 7.82 (d, *J* = 1.8 Hz, 1H), 7.52 (d, *J* = 8.6 Hz, 1H), 7.41 (dd, *J* = 8.6, 1.9 Hz, 1H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 135.6, 135.1, 129.7, 126.1, 120.4, 115.4, 114.2, 112.6, 89.9; HRMS (APCI) *m*/*z* calcd for C₉H₅BrN₂S [M]⁺ 253.9331 found 253.9329.

5-Iodo-3-thiocyanato-1H-indole (**5i**). Beige solid, yield 31 mg (51%), ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.96 (d, *J* = 1.3 Hz, 1H), 7.91 (s, 1H), 7.53 (dd, *J* = 8.5, 1.6 Hz, 1H), 7.39 (d, *J* = 8.5 Hz, 1H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 135.7, 134.2, 131.6, 130.2, 126.5, 115.7, 112.8, 89.5, 85.5; HRMS (ESI) *m/z* calcd for C₉H₅IN₂S [M+Na]⁺ 322.9110, found 322.9112.

Mechanistic investigation

Control Experiment with radical scavenger

Reaction was performed in the presence of a radical scavenger TEMPO (2 equiv. 0.2 mmol, 31.2 mg) under the standard reaction conditions. The reaction mixture was stirred for 6 h. The reaction was completely inhibited, showing the participation of radical species in this transformation. The mass analysis of the reaction mixture showed no desired product (**2a**) was observed; instead, TEMPO-indole adduct (**2ab**) was formed (Scheme S1 and Figure S1).

Scheme S1. Optimized reaction with TEMPO

Figure S1. HRMS of the crude reaction mixture containing TEMPO

Next control experiment was carried out in the presence of another radical scavenger 2,6-Di*tert*-butyl-4-methylphenol (BHT, 2 equiv. 0.2 mmol, 44 mg). The reaction mixture was stirred for 6 h under sunlight. No desired product (2a) was observed (Scheme S2).

Scheme S2. Optimized reaction with BHT

Afterward, the reaction of *para*-toluenethiol (0.5 equiv) with 2-methyl indole (1 equiv) under the optimized reaction conditions was studied (Scheme S3). Desired 3-sulfenyl indole **4a** was not realized, although, trace of oxidized *para*-tolyl disulfide was observed.

Scheme S3. Reaction of para-toluenethiol to 2-methyl indole

Electrochemical analysis of catalyst

Electrochemical cyclic voltammetry (CV) experiment were carried out by three electrode configurations with a glassy carbon (GC) working electrode, a platinum counter electrode, and standard calomel electrode (SCE).

Reaction condition: Indole **1a** (2 mM) in 5 mL CH₃CN containing 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF₆) with scan rate 5 m Vs⁻¹. $E_{ox} = 0.455$ V, $E_{red} = 0.540$ V, $E_{1/2} = 0.497$ V.

Figure S2. Cyclic Voltammogram of 1a in CH₃CN

EPR experiment

To investigate the reaction pathways, EPR experiment was conducted on the reaction mixture (Scheme S4). The reaction was carried out using indole (0.1 mmol) and Diselenide (0.05 mmol) in 5 mL RB in CH₃CN. The reaction mixture was irradiated under sunlight for 5 h then transferred to EPR tube and EPR spectra was recorded. The presence of radical in EPR spectrum of the reaction mixture suggests that the radicals are involved in the reaction mixture.

Scheme S4. Reaction with diselenide in acetonitrile under O₂ atmosphere

Figure S3. EPR spectrum of reaction mixture in CH₃CN

Hydrogen peroxide detection experiment

The reaction was carried out at 0.1 mmol of 1a using 0.05 mmol of 1ab in in 5 mL RB then 0.6 mL of CD₃CN was added to the mixture (Scheme S5). The reaction mixture was irradiated under visible light for 4 h then transferred to NMR tube and NMR spectra was recorded. NMR study suggests the formation of hydrogen peroxide in the reaction.

Scheme S5. Hydrogen peroxide evolution experiment

¹H NMR of commercially available hydrogen peroxide in CD₃CN

¹H NMR of the crude reaction mixture of 2a (peak at 10.14 ppm belongs to hydrogen peroxide)

References

- 1. G. Mugesh, A. Panda, S. Kumar, S. D. Apte, H. B. Singh, R. J. Butcher *Organometallics* 2002, **21**, 884.
- D. Singh, A. M. Deobald, L. R. S. Camargo, G. Tabarelli, O. E. D. Rodrigues, A. L. Braga, Org. Lett. 2010, 12, 3288.
- Z. Y. Wen, J. W. Xu, Z. W. Wang, H. Qi, Q. L. Xu, Z. S. Bai, Q. Zhang, K. Bao, Y. L. Wu, W. G. Zhang, *Eur. J. Med. Chem.* 2015, **90**, 184.
- Q. B. Zhang, Y. L. Ban, P. F. Yuan, S. J. Peng, J. G. Fang, L. Z. Wu, Q. Liu, *Green Chem.* 2017, 19, 5559.
- J. Rafique, S. Saba, M. S. Franco, L. Bettanin, A. R. Schneider, L. T. Silva, A. L. Braga, *Chem. Eur. J.* 2018, 24, 4173.
- 6. H. Li, X. Wang, J. Yan, Appl Organometal Chem. 2017, 31, e3864.
- N. L. Ferreira, J. B. Azeredo, B. L. Fiorentin, A. L. Braga, *Eur. J. Org. Chem.* 2015, 5070.
- 8. X. Yang, Y. Bao, Z. Dai, Q. Zhou, F. Yang, Green Chem. 2018, 20, 3727.
- 9. J. S. Yadav, B. V. S. Reddy, Y. J. Reddy, K. Praneeth, Synthesis 2009, 1520.
- 10. F. Bai, S. Zhang, L. Wei, Y. Liu, Asian J. Org. Chem. 2018, 7, 371.
- L. Bering, L. D'Ottavio, G. Sirvinskaitea, A. P. Antonchick, *Chem. Commun.* 2018, 54, 13022.
- W. Zhang, J. Tang, W. Yu, Q. Huang, Y. Fu, G. Kuang, C. Pan, G. Yu, ACS Catal.
 2018, 8, 8084.

Mass Spectrum of 2a

Sample ID: VR-02-26

Supervisor: Dr S Kumar

Column: HP-5

Instrument: Agilent 7890A GC with 5975C MS system

<u>Method:</u> General_1_HP5_80_DEG.M

Acquisition date: 15/11/17 <u>Operator:</u> IISERB-CIF-Mass Facility <u>Ionization:</u> EI (70 eV) <u>MSD</u>: Single Quad.

¹H NMR Spectrum of 2b

¹³C NMR Spectrum of 2b

Mass Spectrum of 2b

There are a set of the		Acquisition date: 11/12/17
<u>Sample ID:</u> VR-595	Supervisor: Dr. S Kumar	Operator: IISERB-CIF-Mass Facility
<u>Instrument:</u> Agilent 7890A GC with 5975C MS system	Column: HP-5	Ionization: EI (70 eV)
	<u>Method:</u> General_1_HP5_80_DEG.M	<u>MSD</u> : Single Quad.

Abundance

Time->

Abundance

m z->

¹H NMR Spectrum of 2c

¹³C NMR Spectrum of 2c

Mass Spectrum of 2c

 Acquisition date:
 09/12/17

 Sample ID:
 VR-02-25
 Supervisor:
 Dr. S Kumar
 Operator:
 IISERB-CIF-Mass Facility

 Instrument:
 Agilent 7890A GC
 Column:
 HP-5
 Ionization:
 EI (70 eV)

 with 5975C MS system
 Method:
 General_1_HP5_80_DEG.M
 MSD:
 Single Quad.

 Abundance
 TIC:
 VR-02-25.D\data.ms
 Hethod:
 Hethod:

Agilent Technologies

Page 1 of 1

¹H NMR Spectrum of 2d

0.0

Mass Spectrum of 2d

Sample ID: VR-613

Instrument: Agilent 7890A GC with 5975C MS system

Supervisor: Dr. S Kumar

<u>Column</u>: HP-5 <u>Method:</u> General_1_HP5_80_DEG.M Acquisition date: 09/12/17 <u>Operator:</u> IISERB-CIF-Mass Facility <u>Ionization:</u> EI (70 eV) <u>MSD</u>: Single Quad.

Agilent Technologies

Page 1 of 1

¹H NMR Spectrum of 2f

¹³C NMR Spectrum of 2f

⁷⁷Se NMR Spectrum of 2g

Mass Spectrum of 2g

¹H NMR Spectrum of 2h

¹³C NMR Spectrum of 2h

0 -

⁷⁷Se NMR Spectrum of 2h

-235.35

¹H NMR Spectrum of 2i

¹³C NMR Spectrum of 2i

¹H NMR Spectrum of 2j

0.0

¹³C NMR Spectrum of 2k

⁷⁷Se NMR Spectrum of 2k

¹H NMR Spectrum of 2l

¹³C NMR Spectrum of 2l

¹³C NMR Spectrum of 2m

0

Mass Spectrum of 2m

			Display	Report				
Analysis Info Analysis Name Method Sample Name Comment	D:\Data\user data\2017\APRIL 2017\27 april\Dr.S.Kumar-VR- hrlcms_pos_mid_tunemix.m Dr.S.Kumar-VR-02-31				Acquisition Dat 02-31_1-B,1_01_ Operator Instrument	te 4/27/20 _1432.d RUCHI micrOT(17 12:59:25 PI SHRIVASTAV OF-Q II 10330	M A
Acquisition Par Source Type Focus Scan Begin Scan End	ameter ESI Ion Pol; Active Set Caj 50 m/z Set End 3000 m/z Set Col		ty ary Plate Offset ion Cell RF	Positive 4500 V -500 V 450.0 Vpp	Set Nebulizer 0.3 Bar Set Dry Heater 200 °C Set Dry Gas 4.0 l/min Set Divert Valve Waste		0.3 Bar 200 °C 4.0 l/min Waste	
Intens. x106- 1.0- 0.8- 0.6- 0.4- 0.2- [mAU]- 400- 200-		260	280 Se		Dr.S.Kumar-VR-0	2-31_1-B,1_0	1_1432.d: TIC +/ Time Wavelengti -5.1min #(2919-3	~ ə [min] 0024),
Intens. ×10 ⁴ 1.0 0.5	256.2633 193.0884 200	2.0364 464.077 400	72 621. 600	⁰³²¹ 760.	9994	+MS,	4.9-5.1 min #(290	3-303) m/z
Intens. x104 1.0 0.5 345.037 0.0	73 346.0392 	347.0369	348.0410	349.0364	350.0393 	+MS, 351.0367 人.	4.9-5.1min #(290 352.0400	3-303)
2000 1000 345.039 0 	91 346.0399 <u> </u>	347.0373	348.0406 	349.0365	350.0398 	351.0367 	352.0400 352	949.04

Bruker Compass DataAnalysis 4.0 4/27/2017 4:10:49 PM Page 1 of 1 printed:

S77

¹H NMR Spectrum of 2n

Mass Spectrum of 3n

 Sample ID:
 VR-02-24
 Supervisor: Dr. S Kumar
 Operator: IISERB-CIF-Mass Facility

 Instrument:
 Acquisition date:
 10/04/17

 With 5975C MS system
 Column: HP-5
 Ionization:

 Method:
 General_1_HP5_80_DEG.M
 MSD:

 MSD:
 Single Quad.

Abundance

Abundance

¹H NMR Spectrum of 20

¹³C NMR Spectrum of 20

Mass Spectrum of 20

12.0 6 Temperature 7 Pulse Sequence 1 Data File Name 9 Acquisition Date 5 Solvent WN 11 Spectrometer 8 Number of Scans 4 Owner 16 Spectral Size 15 Acquired Size 14 Nudeus 13 Lowest Frequency 12 Spectral Width 10 Modification Date Origin Title Frequency 11.5 Parameter 11.0 10.5 32768 65536 -1911.5 500.13 zg30 298.0 CDCl3 nmrsu E:/VandanaR/Sangit-VR-621(500MHz)/1/fid 10000.0 Sangit-VR-621(500MHz), 1.fd 보 2017-09-09T12:37:12 2017-09-09T12:37:11 16 Bruker BioSpin GmbH 10.0 9.5 Value 9.0 -8.53 7.61 7.60 7.52 7.51 8.5 0.96-I 8.0 0.95 1.00 1.02 2.10 1.02 1.99 7.39 7.5 7.29 7.29 7.28 7.27 7.27 7.27 7.26 7.25 7.24 7.24 7.24 7.24 7.10 7.10 7.09 7.09 7.09 7.09 7.0 6.5 6.0 f1 (ppm) 7.6 7.5 5.5 7.4 7.3 f1 (ppm) 5.0 4.5 7.2 4.0 7.1 3.5 7.0 3.0 Br 2.5 CI 2.0 'N H 1.5 1.0 0.5 0.0

¹H NMR Spectrum of 2p

¹³C NMR Spectrum of 2p

Mass Spectrum of 2p

¹³C NMR Spectrum of 2q

Mass Spectrum of 2q

Bruker Compass DataAnalysis 4.0 5/17/2018 3:41:30 PM printed:

¹³C NMR Spectrum of 2r

Mass Spectrum of 2r

Bruker Compass DataAnalysis 4.0 printed: 5/17/2018 3:39:13 PM Page 1 of 1

¹H NMR Spectrum of 2s

¹³C NMR Spectrum of 2s

⁷⁷Se NMR Spectrum of 2s

¹H NMR Spectrum of 2t

¹H NMR Spectrum of 2u

0.0

¹³C NMR Spectrum of 2u

0

Mass Spectrum of 2u

Bruker Compass DataAnalysis 4.0 printed: 4/5/2018 3:45:21 PM Page 1 of 1

¹H NMR Spectrum of 2v

0.0

¹³C NMR Spectrum of 2v

Mass Spectrum of 2v

¹³C NMR Spectrum of 2w

Mass Spectrum of 2w

¹H NMR Spectrum of 2x

Mass Spectrum of 2x

Page 1 of 1

¹H NMR Spectrum of II

Mass Spectrum of 3a

¹H NMR Spectrum of 3b

¹³C NMR Spectrum of 3b

Mass Spectrum of 3b

¹³C NMR Spectrum of 3c

Mass Spectrum of 3c

¹H NMR Spectrum of 3d

Mass Spectrum of 3d

¹H NMR Spectrum of 4a

¹³C NMR Spectrum of 4a

Mass Spectrum of 4a

Page 1 of 1

¹H NMR Spectrum of 4b

Mass Spectrum of 4b

Page 1 of 1

¹H NMR Spectrum of 4c

¹³C NMR Spectrum of 4c
Mass Spectrum of 4c

Page 1 of 1

¹H NMR Spectrum of 4d

¹³C NMR Spectrum of 4d

Mass Spectrum of 4d

Bruker Compass DataAnalysis 4.0 printed: 5/17/2018 3:35:03 PM Page 1 of 1

Mass Spectrum of 4e

There are a state		Acquisition date: 03/04/18
Sample ID: VR-639	Supervisor: Dr. S Kumar	Operator: IISERB-CIF-Mass Facility
Instrument: Agilent 7890A GC with 5975C MS system	Column: HP-5	Ionization: EI (70 eV)
	<u>Method:</u> General_1_HP5_80_DEG.M	<u>MSD</u> : Single Quad.

Abundance

m/z-->

Page 1 of 1

S153

Mass Spectrum of 4f

¹H NMR Spectrum of 4g

0.5

0.0

¹³C NMR Spectrum of 4g

Mass Spectrum of 4g

¹³C NMR Spectrum of 5a

Mass Spectrum of 5a

 Sample ID:
 VR-708
 Supervisor:
 Dr. S Kumar
 Operator:
 IISERB-CIF-Mass Facility

 Instrument:
 Agilent 7890A GC
 Column:
 HP-5
 Ionization:
 EI (70 eV)

 with 5975C MS system
 Method:
 General_1_HP5_80_DEG.M
 MSD:
 Single Quad.

¹H NMR Spectrum of 5b

Mass Spectrum of 5b

Acquisition date: 11/10/18 Sample ID: VR-713 Supervisor: Dr. S Kumar **Operator:** IISERB-CIF-Mass Facility Ionization: EI (70 eV) Instrument: Agilent 7890A GC Column: HP-5 with 5975C MS system Method: General_1_HP5_80_DEG.M MSD: Single Quad. Abundance TIC: Ş Kumar-VR-713.D\data.ms 40107 3.80+07 3.60+07 3.40+07 3.20+07 30107 2.80+07 2.60+07 2.40+07 2.20+07 20107 1.80+07 1.60+07 1.40+07 1.20+07 10+07 8000000 6000000 4000000 2000000

Abundance

Time->

10.00

12.00

14.00

16.00

18.00

20.00

6.00

8.00

S163

¹H NMR Spectrum of 5c

Mass Spectrum of 5c

 Sample ID:
 VR-707
 Supervisor:
 Dr. S Kumar

 Instrument:
 Agilent 7890A GC
 Column:
 HP-5

 with 5975C MS system
 Method:
 General_1_HP5_80_DEG.M

Acquisition date: 11/10/18 <u>Operator:</u> IISERB-CIF-Mass Facility <u>Ionization:</u> EI (70 eV) <u>MSD</u>: Single Quad.

¹H NMR Spectrum of 5d

Mass Spectrum of 5d

Bruker Compass DataAnalysis 4.0 printed: 10/15/2018 4:15:15 PM Page 1 of 1

¹H NMR Spectrum of 5e

¹³C NMR Spectrum of 5e

Mass Spectrum of 5e

Display Report

Bruker Compass DataAnalysis 4.0 printed: 10/12/2018 2:46:56 PM Page 1 of 1

¹H NMR Spectrum of 5f

¹³C NMR Spectrum of 5f

Mass Spectrum of 5g

¹H NMR Spectrum of 5h

¹³C NMR Spectrum of 5h

0 -

Mass Spectrum of 5h

S180

¹H NMR Spectrum of 5i

S182

Mass Spectrum of 5i

1000 500 0 323.9143 324.9069 323.00 323.25 323.50 323.75 324.00 324.25 324.50 324.75 325.00 m/z

Bruker Compass DataAnalysis 4.0 printed: 10/15/2018 4:14:09 PM Page 1 of 1

ORTEP view of 2h at 50% ellipsoidal probability (hydrogens are omitted for clarity)

Packing diagram of 2h

Identification code	VR-601 (CCDC No. 1887	'962)
Empirical formula	C ₁₅ H ₁₂ Br N Se	
Formula weight	365.13	
Temperature	298(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 2 ₁ /n	
Unit cell dimensions	a = 12.469 (4) Å	α= 90°.
	b = 6.265 (2) Å	β= 96.553(18)°.
	c = 17.738 (6) Å	$\gamma = 90^{\circ}.$
Volume	1376.6(8) Å ³	
Z	4	
Density (calculated)	1.762 g/cm ³	
Absorption coefficient	5.611 mm ⁻¹	
F(000)	712	
Theta range for data collection	2.311 to 28.832°.	
Index ranges	-16<=h<=16, -8<=k<=8, -	-24<=l<=24
Reflections collected	23179	
Independent reflections	3581 [R(int) = 0.0883]	
Completeness to theta = 25.242°	100.0 %	
Absorption correction	None	
Refinement method	Full-matrix least-squares	on F^2
Data / restraints / parameters	3581 / 0 / 164	
Goodness-of-fit on F ²	0.991	
Final R indices [I>2sigma(I)]	R1 = 0.0487, wR2 = 0.103	36
R indices (all data)	R1 = 0.0825, wR2 = 0.118	88
Extinction coefficient	n/a	
Largest diff. peak and hole	1.433 and -1.278 e.Å ⁻³	

Table 1. Crystal data and structure refinement for 2h

× I ⁄			8	
	X	У	Z	U(eq)
Se1	0.48060(3)	0.64594(8)	0.59231(2)	0.04270(15)
Br1	0.31322(5)	0.26095(9)	0.54261(3)	0.06261(19)
N1	0.6409(3)	1.1566(6)	0.6874(3)	0.0524(10)
C1	0.2680(3)	0.4890(8)	0.6019(2)	0.0453(11)
C2	0.1648(4)	0.4884(10)	0.6220(3)	0.0633(15)
C3	0.1317(4)	0.6510(11)	0.6654(3)	0.0678(16)
C4	0.2010(4)	0.8141(10)	0.6894(3)	0.0610(14)
C5	0.3052(4)	0.8141(8)	0.6687(3)	0.0463(11)
C6	0.3394(3)	0.6528(7)	0.6248(2)	0.0365(9)
C7	0.5490(3)	0.8620(7)	0.6537(2)	0.0361(9)
C8	0.5872(3)	1.0487(8)	0.6283(3)	0.0471(11)
C9	0.6379(3)	1.0423(7)	0.7526(3)	0.0417(10)
C10	0.5809(3)	0.8515(7)	0.7336(2)	0.0338(8)
C11	0.5655(3)	0.7058(7)	0.7899(2)	0.0383(9)
C12	0.6049(4)	0.7490(8)	0.8643(3)	0.0491(11)
C13	0.6611(4)	0.9411(9)	0.8802(3)	0.0555(13)
C14	0.6797(4)	1.0866(8)	0.8265(3)	0.0506(12)
C15	0.5868(5)	0.5953(11)	0.9272(3)	0.0740(18)

Table 2. Atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for VR-601. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

Table 3. Selected bond lengths [Å] for VR-601

Se1-C6	1.914(4)	С8-Н8	0.9300
Se1-C7	1.880(4)	C5-C4	1.388(7)
Br1-C1	1.898(5)	С5-Н5	0.9300
N1-C8	1.358(6)	C14-C13	1.358(8)
N1-C9	1.365(6)	C14-H14	0.9300
N1-H1	0.8600	C12-C13	1.405(8)
C10-C11	1.383(6)	C12-C15	1.510(8)
C10-C9	1.412(6)	С13-Н13	0.9300
C10-C7	1.429(6)	C4-C3	1.374(8)

C6-C5	1.374(7)	C4-H4	0.9300
C6-C1	1.389(6)	C2-C3	1.368(9)
C7-C8	1.359(6)	C2-H2	0.9300
C11-C12	1.380(6)	С3-Н3	0.9300
C11-H11	0.9300	C15-H15A	0.9600
C9-C14	1.382(7)	C15-H15B	0.9600
C1-C2	1.374(7)	C15-H15C	0.9600

Table 4. Selected bond angles $[^\circ]$ for VR-601

C7-Se1-C6	100.45(18)	С6-С5-Н5	119.7
C8-N1-C9	109.5(4)	С4-С5-Н5	119.7
C8-N1-H1	125.2	C13-C14-C9	117.0(4)
C9-N1-H1	125.2	C13-C14-H14	121.5
C11-C10-C9	119.6(4)	C9-C14-H14	121.5
C11-C10-C7	134.5(4)	C11-C12-C13	118.4(5)
C9-C10-C7	105.9(4)	C11-C12-C15	120.9(5)
C5-C6-C1	118.6(4)	C13-C12-C15	120.7(5)
C5-C6-Se1	122.9(3)	C14-C13-C12	123.7(5)
C1-C6-Se1	118.5(4)	С14-С13-Н13	118.1
C8-C7-C10	107.5(4)	С12-С13-Н13	118.1
C8-C7-Se1	125.5(3)	C3-C4-C5	119.5(5)
C10-C7-Se1	126.7(3)	С3-С4-Н4	120.2
C12-C11-C10	119.8(4)	С5-С4-Н4	120.2
С12-С11-Н11	120.1	C3-C2-C1	119.7(5)
C10-C11-H11	120.1	С3-С2-Н2	120.1
N1-C9-C14	130.9(4)	С1-С2-Н2	120.1
N1-C9-C10	107.7(4)	C2-C3-C4	120.5(5)
C2-C1-C6	121.0(5)	С4-С3-Н3	119.7
C2-C1-Br1	119.2(4)	C12-C15-H15A	109.5
C6-C1-Br1	119.8(3)	C12-C15-H15B	109.5

N1-C8-C7	109.5(4)	H15A-C15-H15B	109.5
N1-C8-H8	125.3	С12-С15-Н15С	109.5
С7-С8-Н8	125.3	H15A-C15-H15C	109.5
C6-C5-C4	120.7(5)	H15B-C15-H15C	109.5

Table 5. Anisotropic displacement parameters (Å²) for VR-601. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a*²U¹¹ + ... + 2 h k a* b* U¹²]

	U11	U ²²	U ³³	U ²³	U13	U12
Se1	0.0355(2)	0.0556(3)	0.0378(2)	-0.0061(2)	0.00765(16)	-0.0061(2)
Br1	0.0657(3)	0.0540(3)	0.0640(4)	-0.0044(3)	-0.0107(3)	-0.0114(3)
N1	0.047(2)	0.039(2)	0.073(3)	0.000(2)	0.016(2)	-0.0148(18)
C1	0.040(2)	0.054(3)	0.040(2)	0.009(2)	-0.0046(18)	-0.009(2)
C2	0.043(3)	0.080(4)	0.065(3)	0.010(3)	-0.001(2)	-0.023(3)
C3	0.034(2)	0.102(5)	0.069(4)	0.015(4)	0.014(2)	-0.009(3)
C4	0.040(3)	0.083(4)	0.062(3)	0.003(3)	0.016(2)	0.002(3)
C5	0.038(2)	0.057(3)	0.044(3)	0.002(2)	0.0086(19)	-0.009(2)
C6	0.0308(18)	0.051(2)	0.0277(19)	0.0108(19)	0.0015(15)	-0.0059(18)
C7	0.0255(17)	0.041(2)	0.042(2)	0.0011(19)	0.0057(15)	-0.0047(17)
C8	0.039(2)	0.051(3)	0.053(3)	0.011(2)	0.0111(19)	-0.003(2)
C9	0.0251(18)	0.043(2)	0.059(3)	-0.005(2)	0.0110(18)	-0.0020(17)
C10	0.0218(16)	0.037(2)	0.043(2)	-0.0040(18)	0.0076(15)	0.0011(16)
C11	0.035(2)	0.040(2)	0.040(2)	-0.0006(18)	0.0041(17)	0.0006(17)
C12	0.039(2)	0.062(3)	0.046(3)	-0.002(2)	0.004(2)	0.013(2)
C13	0.043(2)	0.075(4)	0.047(3)	-0.019(3)	0.000(2)	0.009(2)
C14	0.033(2)	0.051(3)	0.067(3)	-0.025(2)	0.005(2)	-0.0043(19)
C15	0.094(5)	0.085(5)	0.042(3)	0.013(3)	0.005(3)	0.023(4)

	Х	У	Z	U(eq)	
H1	0.6721	1.2782	0.6842	0.063	
H2	0.1177	0.3779	0.6063	0.076	
H3	0.0617	0.6511	0.6788	0.081	
H4	0.1784	0.9237	0.7192	0.073	
H5	0.3522	0.9245	0.6848	0.056	
H8	0.5779	1.0954	0.5782	0.057	
H11	0.5287	0.5790	0.7778	0.046	
H13	0.6871	0.9702	0.9304	0.067	
H14	0.7188	1.2106	0.8388	0.061	
H15A	0.5562	0.6704	0.9668	0.111	
H15B	0.6545	0.5332	0.9473	0.111	
H15C	0.5383	0.4845	0.9075	0.111	

Table 6. Hydrogen coordinates and isotropic displacement parameters (Å $^2)$ for VR-601