Supporting Information

Room Temperature Catalytic Dehydrogenation of Cyclic Amines with Liberation of H₂ Using Water as a Solvent

Ekambaram Balaraman*1 and Manoj K. Sahoo²

¹Department of Chemical Sciences, Indian Institute of Science Education and Research –

Tirupati (IISER-T), Tirupati 517507, India.

²Organic Chemistry Division, Dr. Homi Bhabha Road, CSIR-National Chemical Laboratory (CSIR-NCL), Pune-411008, India.

Table of Contents

1.	Mechanistic studies	S2-S5
2.	Copy of ¹ H and ¹³ C Spectra	S6-S25
3.	Copy of HRMS data	S26-S35

1. Mechanistic Studies

1.1 UV-Visible spectra of proton reduction catalysts

Solutions of 10^{-4} M was prepared for all Co-based proton reduction catalysts used for the present catalytic study as well as for $[Ru(bpy)_3]^{2+}$ using analytical grade acetonitrile. Then the solution-state UV-Visible spectra were recorded and are given in Figure S1. From the UV-visible absorption spectra of proton reduction catalysts, it is found that the proton reduction catalysts do not absorb in the visible-light region. However, the photoredox catalyst $[Ru(bpy)_3]^{2+}$ absorbs the visible-light, hence initiates the redox reaction *via* single electron transfer process and not the proton reduction catalysts.

Figure S1. (A) UV-Visible spectra of proton reduction catalysts used for the present study. (B) Comparison of UV-Visible spectral absorbance of $[Ru(bpy)_3]Cl_2$ with proton reduction catalysts used for the present study.

1.2 Detection of liberated gas

The liberated hydrogen gas was detected and quantified after completion of the reaction for substrate **1a**.

1.3 Quantification of hydrogen gas

The evolved hydrogen gas was quantified by the hydrogenation of styrene, and it is observed that 76% of hydrogen gas was evolved from the hydrogenation reaction while the isolated yield of 2a is 93%. The evolved hydrogen gas was utilized for hydrogenation of styrene. Simultaneously two parallel reactions were carried out. In one reaction vial, visible-light mediated photoredox catalytic acceptorless dehydrogenation of 1a was carried out under the optimal reaction condition. Whereas in another reaction vial thermal hydrogenation of styrene 5 was carried out using RhCl(PPh₃)₃ as the catalyst. Both the reaction vials are connected to each other by a cannula and were allowed to continue for 12 h. After the stipulated time, the reaction mixture was analyzed in GC for hydrogenation of styrene and the results are given below.

Figure S3. Quantification of hydrogen.

Reaction conditions: Substrate (0.25 mmol), [Ru(bpy)₃]Cl₂ (1.0 mol %), [Co] (2.5 mol %), water 8.0 mL, ambient temperature, 12 h, 36 W blue LED, ^{*a*}Isolated yield, ^{*b*}GC yield using n-decane as internal standard.

1.4 Cyclic voltammetric analysis

1.4a Cyclic voltammetry of proton reduction catalyst IV

Redox potentials of proton reduction catalyst and photocatalyst were judged through cyclic voltammetric (CV) investigations. Typically three electrode systems comprising glassy carbon (GC, 3mm dia.) was used as working electrode and Ag/Ag⁺ (0.1M TBAP in acetonitrile) as reference electrode and platinum wire was used as counter electrode, respectively. CVs were recorded in acetonitrile containing 0.1M TBAP as electrolytic medium. Solutions were purged with argon for 30 minutes before scans and also jacketed during the measurements. Potentials were calibrated using the ferrocene as internal standard.

Figure S4. CV of IV (0.001 M) in 0.1 M NBu_4PF_6 in degassed CH_3CN with scan rate 100 mV/s.

1.4b Cyclic voltammetry of partially saturated N-heterocycles

In order get insight into the oxidation potential of the partially saturated *N*-heterocycles, we recorded the cyclic voltammetry data for few of the compounds. The cyclic voltammetry was measured at 10 mV s⁻¹ scan rate using Ag/AgCl as reference electrode, Pt wire as counter electrode and glassy carbon electrode as working electrode in anhydrous degassed acetonitrile with 0.1 M tetrabutylammonium perchlorate (TBAP) as supporting electrolyte. The oxidation potential for **1a**, **3f** and **3h** are given below.

Figure S5. CV of 1a (0.01 M) in 0.1 M NBu₄PF₆ in degassed MeCN with scan rate 10 mV/s.

Figure S6. CV of 3f (0.01 M) in 0.1 M NBu_4PF_6 in degassed MeCN with scan rate 10 mV/s.

Figure S7. CV of 3h (0.01 M) in 0.1 M NBu_4PF_6 in degassed MeCN with scan rate 10 mV/s.

S14

3. Copy of HRMS Data

HRMS of III

HRMS of 4h