Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

Deacetylation by mechanochemistry and aging as a pathway to high molecular weight chitosan from chitin

Thomas Di Nardo,^a Caroline Hadad,^{b,c} Albert Nguyen Van Nhien,^b Audrey Moores^{*a}

Table of Contents

Table S1: Comparison of known deacetylation techniques 2
Figure S1: FTIR spectra of commercial chitin pre and post amorphization in ZrO_2 jar with ZrO_2 ball for 30 minutes milling
Figure S2: IR spectra of commercial chitin, commercial chitosan, and chitosan produced with the aging process at room temperature, 98% RH 1:5 chitin:NaOH. The amide peak at 1655 cm ⁻¹ is measured in reference to the hydroxyl peak at 3450 cm ⁻¹
Figure S3: Solid-State ¹³ C NMR spectra of commercial chitin, commercial chitosan, and chitosan produced with the aging process at room temperature. DDA is calculated by comparing the methyl peak at 22 ppm to a reference C1 carbon peak at 104 ppm
Figure S4: Pictures of aged chitosan (from left to right) in 1% acetic acid, 2% acetic acid, buffer solution (0.3M acetic acid, 0.25M sodium acetate, 0.8mM sodium azide), 0.8% lactic acid and $[C_2mim][OAc]$ pre (left) and post (right) heating (80°C. Images show that the age based chitosan only dissolves in $[C_2mim][OAc]$
Figure S5: Effect of the chitin:NaOH ratio on [η] and DDA in the amorphization/aging based chitin deacetylation experiments. Conditions of scheme 2 with aging at 50°C for 6 days. [η] not measured for 1:1, 1:2 and 1:3 chitin:NaOH ratios
Table S2: Initial DDA of commercial chitin, commercial chitosan and solution deacetylatedchitosan acquired by 13C CP MAS NMR7
Table S3: Mixer-mill based commercial chitin deacetylation experiments in PTFE jar with a ZrO_2 ball. DDA = [H]/([COMe]+[H])x100, determined by ¹³ C CP MAS NMR. LAG solvent 10 wt%: none, dichloromethane, acetonitrile, ethyl acetate, methanol, ethanol and deionized water
Table S4: Table of the relative humidity (RH) study of aging of crystalline chitin for 6 days at 22°C with a chitin to NaOH ratio of 1:5

Table S5: DDA and $[\eta]$ of commercial chitin treated with or without amorphization pre- treatment (30 min milling in ZrO ₂ apparatus) followed by 3 to 6 days aging at 22 to 50°C, at 98% humidity and with a chitin to NaOH ratio of 1:5	3
Table S6: DDA and $[\eta]$ of commercial chitin treated with amorphization pre-treatment (30 min milling in ZrO ₂ apparatus) followed by 6 days aging at 50°C, at 98% humidity and with a chitin to NaOH ratio ranging from 1:1 to 1:5	; ;
Table S7: Energy consumption comparison of solvo-thermal and aging methods for deacetylation of 1 Kg of chitin into chitosan. Solvothermal was calculated for heating 1 Kg of chitin, 18.5 Kg of water, and 18.5 Kg of NaOH to 133 °C. Aging was calculated for heating 1 Kg of chitin, 2 Kg of water, and 0.9 Kg of NaOH. Amorphization includes 30 mins of milling in ZrO ₂ jar with ZrO ₂ ball. Mixing requires 5 mins milling in PTFE jar with one ZrO ₂	5
UBU	1

Table S1: Comparison of known deacetylation techniques.

Method	Conditions	NaOH	MW	DDA	Ref	
		equivalents				
Solvo-	50%	42	Varied	70-99%	C. Rong Huei, Carbohydr. Polym., 1996,	
Thermal	NaOH(aq), RT-				29 , 353–358.	
	140°C, 3ª-				A. Domard and M. Rinaudo, Int. J. Biol.	
	540 Hrs ^b				Macromol., 1983, 5 , 49–52.	
					A. Alimuniar, and R. Zainuddin, In	
					Advances in Chitin and Chitosan, C.J.	
					Beine, P.A. Sanford and J.P. Zikakis	
					(eds.), Elsevier Applied Science, London	
					and New York, pp. 627-632, 1992.	

Planetary Milling	1:5 chitin:NaOH, 100 balls ZrO2 ^{ZrO2} , 80 mins	5	1-13 kDa	80 %	X. Chen, H. Yang, Z. Zhong and N.Yan, Green Chem., 2017, 19 , 2783–2792.
Microwave	45% NaOH _(aq) , 5.5 Mins, 900 W	31	85 kDa	80 %	A. Sahu, P. Goswami and U. Bora, J. Mater. Sci. Mater. Med., , DOI:10.1007/s10856-008-3549-4.
Sonication	60 % NaOH _(aq) , 30 mins, 500 W	>16	Degradation	73 %	M. Anwar, A. S. Anggraeni and M. H. Al Amin, <i>AIP Conf. Proc.</i> DOI:10.1063/1.4978144.
High Pressure Run	50% NaOH _(aq) , 120°C, 15 PSI	41	1466 kDa	90 %	H. K. No, Y. I. Cho, H. R. Kim and S. P. Meyers, <i>J. Agric. Food Chem.</i> , 2000, 48 , 2625–2627.
Maceration	7 days, 80 % NaOH _(aq)	22	N/A	80 %	M. Anwar, A. S. Anggraeni and M. H. Al Amin, <i>AIP Conf. Proc.</i> DOI:10.1063/1.4978144.
Freeze thaw	24% NaOH	>13	180-300 kDa	80-95%	S. V. Nemtsev, A. I. Gamzazade, S. V. Rogozhin, V. M. Bykova and V. P. Bykov, <i>Appl. Biochem. Microbiol.</i> , 2002, 38 , 521–526.
This work	Milling for 30 min followed by 6 days of aging	5	N/A	80-95%	

Figure S1: FTIR spectra of commercial chitin pre and post amorphization in ZrO_2 jar with ZrO_2 ball for 30 minutes milling.

Figure S2: IR spectra of commercial chitin, commercial chitosan, and chitosan produced with the aging process at room temperature, 98% RH 1:5 chitin:NaOH. The amide peak at 1655 cm⁻¹ is measured in reference to the hydroxyl peak at 3450 cm⁻¹.

Figure S3: Solid-State ¹³C NMR spectra of commercial chitin, commercial chitosan, and chitosan produced with the aging process at room temperature. DDA is calculated by comparing the methyl peak at 22 ppm to a reference C1 carbon peak at 104 ppm.

Figure S4: Pictures of aged chitosan (from left to right) in 1% acetic acid, 2% acetic acid, buffer solution (0.3M acetic acid, 0.25M sodium acetate, 0.8mM sodium azide), 0.8% lactic acid and [C₂mim][OAc] pre (left) and post (right) heating (80°C. Images show that the age based chitosan only dissolves in [C₂mim][OAc].

Figure S5: Effect of the chitin:NaOH ratio on $[\eta]$ and DDA in the amorphization/aging based chitin deacetylation experiments. Conditions of scheme 2 with aging at 50°C for 6 days. $[\eta]$ not measured for 1:1, 1:2 and 1:3 chitin:NaOH ratios.

Table S2: Initial DDA of commercial chitin, commercial chitosan and solution deacetylated chitosan acquired by ¹³C CP MAS NMR

Sample	DDA (%)
PG-Chitin	4
Commercial Chitosan LMW	89
Commercial Chitosan MMW	96

Commercial Chitosan HMW	85
Solution Deacetylated Chitosan	76

Table S3: Mixer-mill based commercial chitin deacetylation experiments in PTFE jar with a ZrO_2 ball. DDA = [H]/([COMe]+[H])x100, determined by ¹³C CP MAS NMR. LAG solvent 10 wt%: none, dichloromethane, acetonitrile, ethyl acetate, methanol, ethanol and deionized water.

Milling time (min)	NaOH:chitin ratio	DDA (%)	LAG solvent
30	1	5	none
30	2	6	none
30	3	6	none
30	4	7	none
30	5	7	none
60	5	6	none
90	5	7	none
30	1	7	Water
30	1	7	Ethanol
30	1	6	Methanol
30	1	6	Dichloromethane
30	1	6	Ethyl Acetate
30	1	4	Acetonitrile
30	1	9.9	Water (10%)
30	1	14	Water (20%)
30	1	11.76	Water (30%)
30	1	11.65	Water (50%)
30	5	12.4	Water (10%)
30	5	23.8	Water (20%)
30	5	20.56	Water (30%)
30	5	19	Water (50%)

Table S4: Table of the relative humidity (RH) study of aging of crystalline chitin for 6 days at 22°C with a chitin to NaOH ratio of 1:5.

RH(%)	DDA(%)
43	40
75	43
98	60

Table S5: DDA and $[\eta]$ of commercial chitin treated with or without amorphization pre-treatment (30 min milling in ZrO₂ apparatus) followed by 3 to 6 days aging at 22 to 50°C, at 98% humidity and with a chitin to NaOH ratio of 1:5.

Amorphization pre	Temp.			Intrinsic
treatment	(°C)	Aging time (days)	DDA(%)	Viscosity [η]
	22	6	73	2.52
Yes	30	6	90	1.41
	40	6	90	1.27

	50	6	92	1.18
		3	83	3.12
	50	4	84	3.04
	50	5	84	3.04
No		6	87	3.01
NO		3	50	3.23
	22	4	51	3.22
	22	5	65	3.12
		6	60	3.19
	50	3	95	1.27
		4	93	1.26
		5	94	1.22
Was		6	92	1.18
yes -		3	53	2.64
	22	4	76	2.76
	22	5	69	2.69
		6	73	2.52

Table S6: DDA and $[\eta]$ of commercial chitin treated with amorphization pre-treatment (30 min milling in ZrO₂ apparatus) followed by 6 days aging at 50°C, at 98% humidity and with a chitin to NaOH ratio ranging from 1:1 to 1:5.

Chitin:NaOH ratio	DDA(%)	Intrinsic Viscosity [η]
1:1	30	Not measured
1:2	52	Not measured
1:3	68	Not measured
1:4	87	1.84
1:5	92	1.18

Table S7: Energy consumption comparison of solvo-thermal and aging methods for deacetylation of 1 Kg of chitin into chitosan. Solvothermal was calculated for heating 1 Kg of chitin, 18.5 Kg of water, and 18.5 Kg of NaOH to 133 °C. Aging was calculated for heating 1 Kg of chitin, 2 Kg of water, and 0.9 Kg of NaOH. Amorphization includes 30 mins of milling in ZrO₂ jar with ZrO₂ ball. Mixing requires 5 mins milling in PTFE jar with one ZrO₂ ball.

Method	Solvo-thermal	Amorphization	Mixing	Aging
Energy (KJ/Kg)	11,467	3,330	555	269