# Supporting Information

# Recyclable Nickel-Catalyzed C–H/O–H Dual Functionalization of Phenols with Mandelic Acids for the Synthesis of 3-Aryl Benzofuran-2(*3H*)-ones under Solvent-Free Condition<sup>†</sup>

Zhi Tang,<sup>†</sup> Zhou Tong,<sup>†</sup> Zhihui Xu,<sup>†</sup> Chak-Tong Au,<sup>†,‡</sup> Renhua Qiu<sup>\*,†</sup> Shuang-Feng Yin<sup>\*,†</sup>

<sup>†</sup> State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China

<sup>‡</sup> College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, P.R. China

Correspondence to:

E-mail: renhuaqiu@hnu.edu.cn (R. Q. ); sf\_yin@hnu.edu.cn (S.Y.)

Fax: +86-731-88821546

#### Table of Contents

| <b>S</b> 1 | Condition optimization        | S3         |
|------------|-------------------------------|------------|
| S2         | Deuterium Labeling Experiment | S5         |
| S3         | X-ray Crystallographic Data   | S6         |
| S4         | NMR Spectra of All Compounds  | <b>S</b> 9 |

#### S1. Condition optimization

At first, we used the reaction of mandelic acid (1a) with 4-methylphenol (2a) as model reaction for condition optimization (Table S1). Four Lewis acid catalysts, AlCl<sub>3</sub>, Bi(OTf)<sub>3</sub>, Cu(OTf)<sub>2</sub> and Ni(OTf)<sub>2</sub> (10 mol%), were screened under solvent-free condition at 160 °C (entries 1–4). Among them, only Ni(OTf)<sub>2</sub> gives the target product 3-aryl benzofuran-2(*3H*)-one (3a) in 88% yield. The use of the other Ni catalysts resulted in lower yields (entries 5–10). The effects of solvent, reaction temperature, and catalyst amount were also investigated. The reaction proceeded sluggishly in organic solvents (entries 11–16). With the decrease of reaction temperature, there is lowering of product yield (entries 17–19). When the amount of catalyst decreased from 10 mol% to 5.0 and 1.0 mol%, the yield of 3a decreased from 88% to 72% and 34%, respectively (entries 20–21).

|       | OH<br>OH<br>OH<br>+                      |             |                  | =O                     |
|-------|------------------------------------------|-------------|------------------|------------------------|
|       | ů ů                                      | solvent     | , temp.          | J                      |
|       | 1a                                       | 2a          | 3a               |                        |
| entry | catalyst                                 | solvent     | temperature (°C) | yield <sup>b</sup> (%) |
| 1     | AICI <sub>3</sub> 100%                   | _           | 160              | 10                     |
| 2     | Cu(OTf) <sub>2</sub> 10%                 | _           | 160              | 11                     |
| 3     | Bi(OTf) <sub>3</sub> 10%                 | -           | 160              | 13                     |
| 4     | Ni(OTf) <sub>2</sub> 10%                 | -           | 160              | 88                     |
| 5     | dppe Ni 10%                              | -           | 160              | trace                  |
| 6     | NiCl <sub>2</sub> 10%                    | _           | 160              | 23                     |
| 7     | NiF <sub>2</sub> 10%                     | _           | 160              | 36                     |
| 8     | Ni(acac) <sub>2</sub> 10%                | _           | 160              | 19                     |
| 9     | Ni(OAc) <sub>2</sub> 10%                 | _           | 160              | trace                  |
| 10    | NiCl(PPh <sub>3</sub> ) <sub>2</sub> 10% | -           | 160              | trace                  |
| 11    | Ni(OTf) <sub>2</sub> 10%                 | DMF         | 160              | trace                  |
| 12    | Ni(OTf) <sub>2</sub> 10%                 | DMSO        | 160              | trace                  |
| 13    | Ni(OTf) <sub>2</sub> 10%                 | THF         | 160              | trace                  |
| 14    | Ni(OTf) <sub>2</sub> 10%                 | 1,4-dioxane | 160              | trace                  |
| 15    | Ni(OTf) <sub>2</sub> 10%                 | toluene     | 160              | 13                     |
| 16    | Ni(OTf) <sub>2</sub> 10%                 | cyclohexane | 160              | 15                     |
| 17    | Ni(OTf) <sub>2</sub> 10%                 | -           | 140              | 67                     |
| 18    | Ni(OTf) <sub>2</sub> 10%                 | -           | 120              | 45                     |
| 19    | Ni(OTf) <sub>2</sub> 10%                 | -           | 100              | 23                     |
| 20    | Ni(OTf) <sub>2</sub> 5%                  | -           | 160              | 72                     |
| 21    | Ni(OTf) <sub>2</sub> 1%                  | -           | 160              | 34                     |

Table S1. Survey on condition for 3a formation <sup>*a*</sup>

<sup>a</sup> Mandelic acid 1a (0.5 mmol), 4-methylphenol 2a (1.0 mmol), under air condition, sealed tube,
<sup>b</sup> isolated yield.

S2. Deuterium Labeling Experiment



To a 10 mL oven-dried Schlenk tube equipped with a magnetic stirring bar was added mandelic acid 1a (1 mmol, 2.0 equiv, 152 mg), phenol 2b (0.25 mmol, 0.5 equiv, 23.5 mg), phen-2,3,4,5,6-d5-ol-d 2b-D (0.25 mmol, 0.5 equiv, 25 mg), and Ni(OTf)<sub>2</sub> (0.05 mmol, 10 mol%, 18 mg), and the mixture was vigorously stirred at 160 °C for 12 h under vacuum. Then the mixture was cooled to room temperature, followed by the addition of water (15 mL), and extraction with EtOAc (15 mL×3). The combined organic phases were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated in vacuo. Further purification by flash column chromatography on silica gel (eluting with petroleum ether/ethyl acetate) provided the product 3b and 3b-D. The ratio of 3b and 3b-D was determined by <sup>1</sup>H NMR.

The mixture of 3a and 1D-3a: <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.39–7.30 (m, 3.6H), 7.26–7.13 (m, 3.9H), 4.89 (s, 1H).

Radical Trapping Experiment



To a Schlenk tube of 10 mL was charged with 1a (152 mg, 1 mmol), 2a (50.4 mg, 0.50 mmol) TEMPO (78 mg, 0.5 mmol, 1.0 equiv) or 1,4-benzoquinone (54 mg, 0.5 mmol, 1.0 equiv) under standard reaction conditions. The vial was evacuated and then filled with N<sub>2</sub>, and stirred at 160 °C for 12 h. The as-resulted mixture was cooled to room temperature, diluted with  $CH_2Cl_2$  (2 mL), filtered through a celite pad and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel, eluting with EtOAc/hexane (1:20, v/v), to afford the product 3a (yield = 81% to 85%).

#### S3. X-ray Crystallographic Data

Compounds 3a was collected at 100 K on a Rigaku Oxford Diffraction Supernova Dual Source, Cu at Zero equipped with an AtlasS2 CCD using Cu Kα radiation. Data reduction was carried out with the diffractometer software. <sup>[a]</sup> The structures were solved by direct methods using Olex2 software<sup>[b]</sup> and the non-hydrogen atoms were located from the trial structure and then refined anisotropically with SHELXL-2014<sup>[c]</sup> using a full-matrix least squares procedure based on F2. The weighted R factor, wR and goodness-of-fit S values were obtained based on F2. The hydrogen atom positions were fixed geometrically at the calculated distances and allowed to ride on their parent atoms. Crystallographic data for the structure reported in this paper have been deposited at the Cambridge Crystallographic Data Center and allocated with the deposition numbers: CCDC 1854879 for 3a.

Figure S1. ORTEP drawing of 3a



Table S1. Crystal data and structure refinement for 3a.

| Empirical formula | $C_{15}H_{12}O_2$ |
|-------------------|-------------------|
| Formula weight    | 224.25            |
| Temperature/K     | 296.15            |

| Crystal system                                         | monoclinic                                          |  |  |  |
|--------------------------------------------------------|-----------------------------------------------------|--|--|--|
| Space group                                            | $P2_1/n$                                            |  |  |  |
| a/Å                                                    | 9.6376(9)                                           |  |  |  |
| b/Å                                                    | 8.3094(8)                                           |  |  |  |
| c/Å                                                    | 14.8885(14)                                         |  |  |  |
| α/°                                                    | 90.00                                               |  |  |  |
| β/°                                                    | 92.0420(10)                                         |  |  |  |
| γ/°                                                    | 90.00                                               |  |  |  |
| Volume/Å <sup>3</sup>                                  | 1191.6(2)                                           |  |  |  |
| Z                                                      | 4                                                   |  |  |  |
| $\rho_{calc}g/cm^3$                                    | 1.250                                               |  |  |  |
| µ/mm <sup>-1</sup>                                     | 0.082                                               |  |  |  |
| F(000)                                                 | 472.0                                               |  |  |  |
| Crystal size/mm <sup>3</sup>                           | 0.23 	imes 0.21 	imes 0.2                           |  |  |  |
| Radiation                                              | MoK $\alpha$ ( $\lambda = 0.71073$ )                |  |  |  |
| 20 range for data collection/° 4.96 to 49.98           |                                                     |  |  |  |
| Index ranges                                           | $-11 \le h \le 9, -9 \le k \le 8, -13 \le l \le 17$ |  |  |  |
| Reflections collected                                  | 5269                                                |  |  |  |
| Independent reflections                                | 2065 [ $R_{int} = 0.0140, R_{sigma} = 0.0150$ ]     |  |  |  |
| Data/restraints/parameters                             | 2065/0/155                                          |  |  |  |
| Goodness-of-fit on F <sup>2</sup>                      | 1.071                                               |  |  |  |
| Final R indexes [I>= $2\sigma$ (I)]                    | $R_1 = 0.0407, wR_2 = 0.1062$                       |  |  |  |
| Final R indexes [all data]                             | $R_1 = 0.0481, wR_2 = 0.1111$                       |  |  |  |
| Largest diff. peak/hole / e Å <sup>-3</sup> 0.14/-0.17 |                                                     |  |  |  |
|                                                        |                                                     |  |  |  |

Crystal structure determination of 3a

Crystal Data for C<sub>15</sub>H<sub>12</sub>O<sub>2</sub> (M = 224.25 g/mol): monoclinic, space group P2<sub>1</sub>/n (no. 14), a = 9.6376(9) Å, b = 8.3094(8) Å, c = 14.8885(14) Å,  $\beta = 92.0420(10)$ , V = 1191.6(2) Å<sup>3</sup>, Z = 4, T = 296.15 K,  $\mu$ (MoK $\alpha$ ) = 0.082 mm<sup>-1</sup>, *Dcalc* = 1.250 g/cm<sup>3</sup>, 5269 reflections measured ( $4.96^{\circ} \le 2\Theta \le 49.98^{\circ}$ ), 2065 unique ( $R_{int} = 0.0140$ ,  $R_{sigma} =$ 

0.0150) which were used in all calculations. The final  $R_1$  was 0.0407 (>2sigma(I)) and  $wR_2$  was 0.1111 (all data).

#### References

- (a) Agilent Technologies, CrysAlisPRO, Version 1.171.36.28, 2013.
- (b) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J. J. Appl. Cryst. 2009, 42, 339.
- (c) Kratzert, D.; Holstein, J. J.; Krossing, I. J. Appl. Cryst. 2015, 48, 933.

S4. NMR spectra of all compounds

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 3a



## <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 3b





## <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 3d



12 / 39

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 3e





## <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 3g



## <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 3h





3.0

2.5

2.0

1.5

1.0

0.5

0.0

## <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 3i



## <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 3j



# $^{19}\mathrm{F}$ NMR (376 MHz, CDCl\_3) spectrum for 3j



10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

## <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 3k







## <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 3m



## <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 3n



## <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 30



## <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 3p



## <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 3q





#### 27 / 39

## <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 4b





## <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 4d



## <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 4e





# <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 4g





#### 34 / 39



## <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 6a



## <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 6b

## <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 6c







## <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 6e

